多重透射反射紅外光譜(MTR-IR)測量晶硅薄片碳氧含量和晶硅表面高分子刷圖案化
[Abstract]:In the process of producing silicon wafers by CZ direct drawing, because of the use of quartz (Si02) crucible and graphite (C) heating components, oxygen carbon impurities will be introduced to different degrees in the process of melting silicon. Oxygen is in the form of interstitial atoms in the form of interstitial oxygen (InterstitialOxygen, Oi). The position of carbon in silicon crystal is called substitution of silicon atoms. Substitutional Carbon (Cs). Interstitial oxygen and subrogation carbon are the most important forms of oxygen and carbon in Si (CZ) silicon. Their content not only affects the intrinsic absorption of silicon materials, but also influences the physical and electrical properties of the materials. The disadvantage of oxygen is to produce micro defects, and the advantage is to produce pinning effect on the extension of dislocation. In order to enhance the strength of the silicon wafer, its intrinsic impurity absorption technology can prevent the production of defects in the production process. The high carbon content affects the nucleation and precipitation of oxygen, and also leads to the softening and two breakdown of the devices. Therefore, the control of oxygen and carbon content in silicon becomes a means to improve the material performance. However, the control of oxygen carbon content must first be measured accurately. A double block copolymer polystyrene polyvinyl pyridine (polystyrene-block-poly- (4-vinyl pyridine), PS-b-P4VP; polystyrene-block-poly- (2-vinyl pyridine), PS-b-P2VP) is separated at different treatment conditions and produces a certain rule pattern. The double block copolymer is made into a template with different morphologies, such as dot and linear strip. And then using these templates, using Hydroflouricacid (HF) corrosion, oxygen plasma etching, reactive ion etching (Reactive Ion Etching, RIE), and other techniques, such as Reactive Ion Etching, RIE, and other techniques made of alternating intervals of Si-Hx ends and SiOx, and then inoculating various polymer brushes on the basis of these patterns. To achieve various functions, such as integrated circuits, biochips, micro chemical reactors, and so on. In this paper, in this paper, we use Multiple Transmission-Re flection Infrared Spectroscopy (MTR-IR) method for single crystal silicon, thin monocrystalline silicon, and interstitial carbon and interstitial oxygen in solar cells. The content was analyzed by infrared quantitative analysis and related theory. Two, using photolithography and block copolymer etching technology to assemble polymethacrylic acid (Polymethacrylic Ac-id, PMAA), hydroxyethyl methacrylate (2-HydroxyethylMethacrylate, HEMA), Polymethylmethacrylate, PMMA, poly N- isopropyl on the silicon surface N-Iso Propyl acrylamide (PNIPAM) polymer brushes make it more regular patterned. The main contents and results of this paper are as follows: 1, MTR-IR and IR methods for measuring the content of intermediate gap oxygen and subrogation carbon in solar cell silicon wafers. We have recently opened a multiple transmission reflection Fu Liye transform infrared spectroscopy. The method (MIR-IR) is used to measure the content of intermediate gap oxygen (Oi) and subrogation carbon (Cs) in solar cell silicon. Compared with the traditional IR (Infrared) method, it is found that the oxygen absorption peak near 1107 cm-1 can enlarge the 9~10 times of the signal amplification, and the carbon absorption peak at 605 cm-1 can magnify the signal 7~8 times, thus the original detection limit can be reduced. The results of repeated measurements confirm the accuracy and reproducibility of the MTR-IR method. In addition, compared to the vertical incidence and the single transmission of Brewster angle, the MTR method can greatly reduce the amplitude of the interference fringes caused by the multiple reflection and transmission of the thin silicon wafer (thickness less than 0.3 mm). The mechanism of stripe reduction is discussed. One is the integral ball effect (cancellation interference), that is, the wave peak of reflected light and transmitted light is added and offset respectively. Two is that the P polarized light is not reflected in the Brewster angle (no reflection inside the silicon wafer), and all through, thus reducing the dry fringe. And using the P polarized light calculation formula to 0.1mm, 0.2 mm thin. The substitution carbon and the gap oxygen content in the silicon wafer were calculated. The infrared spectra of the thin silicon wafers with S polarized light and P polarized light were simulated, and the reason that the p polarization absorption peak was always higher than the S polarization absorption peak was explained. The distribution of carbon and oxygen content in the polysilicon was analyzed, and the middle gap oxygen and the subrogation carbon content of the 1 mm polysilicon were carried out. The measurements were compared with the IR method. Both the accuracy and the reproducibility were better than the IR.2, and the block copolymer PS-b-P4VP was used as a template to prepare the polymer brush lattice nanoscale pattern. The two amphiphilic block copolymer PS-b-P4VP was self assembled into a micelle in the toluene solution, and PS was formed on the silicon wafer to form a matrix background, and P4VP formed out of the PS matrix back. The circular point of the 50~80nm in the scene is corroded by a dilute HF solution. The corrosion mechanism is that the P4VP micelle is hydrophilic and the HF can make the pyridine rings protonated in P4VP, so the etching selectively occurs under the P4VP micelles. The surface suspended Si-H is obtained by etching the plane silicon with a dilute HF solution. The X bond is covalently coupled to the monolayer of the terminal alkyl bromide initiator by the hydrosilylation reaction, and the terminal TERT alkyl bromide can trigger the surface atom transfer radical polymerization (Surface-Induced Atom Transfer Rad icalPolymerization, SI-ATRP), using the monomer methyl methacrylate (HEMA), sodium methacrylate (NaMA), methyl propyl Methyl enate (MMA) and N- isopropyl acrylamide (NIPAM) have been assembled on the silicon surface by a variety of polymer brushes, Si-g-Poly (HEMA/PMAA/PMMA/PNIPAM), and a lattice pattern on the convex surface is obtained. The whole process is detected by multiple transmission reflectance infrared spectroscopy (MTR-IR), atomic force microscopy (AFM) and scanning electron microscopy (SEM). The formation process of the polymer brush pattern array on the silicon surface.3, the block copolymer PS-b-P2VP is used as a template to prepare the polymer brushed linear or fingerprint like nanoscale pattern. Two Pro block copolymer PS-b-P2VP is self assembled into a micelle in the toluene solution, and PS is formed on the silicon wafer to form a matrix background, and P2VP forms a 20~30 nm that outburst the background of the PS matrix. And then put 30~40 h at room temperature at room temperature in a 10:1 THF/H2O solvent vapor tight environment, forming a PS-b-P2VP straight strip or fingerprint pattern, then soaking 3~24 h in Na2PtCl4/HCl solution, combining positive charge [P2VP]+ with negative charged [PtCl4]2- electrostatic attraction together, removing PS-b-P2VP with O2 plasma treatment, and making Na2 PtCl4 generates Pt lines. Using 1:1:4 HF/H2O2/EtOH anode assisted solution corrosion, the linear or fingerprint stripes between 50 and 80nm and 30~50 nm are obtained. The mechanism of corrosion is the primary cell reaction mechanism at the site of Pt. Finally, the PMAA is assembled at the nanoscale pits at the line stripe. The pattern of line or fingerprint like PMAA pattern is obtained. The morphology was observed by scanning electron microscope (SEM) and atomic force microscope (AFM).
【學(xué)位授予單位】:南京大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TQ127.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李呂qG,趙國良;嵌段共聚物微觀分相理論[J];大連工學(xué)院學(xué)報(bào);1980年01期
2 羅筱烈,馬德柱,蔣文博;聚對苯二甲酸丁二醇酯-聚∈-己內(nèi)酯嵌段共聚物鏈化學(xué)結(jié)構(gòu)研究[J];中國科學(xué)技術(shù)大學(xué)學(xué)報(bào);1990年02期
3 許曉秋,,黃樹基,李鳳英,邢利燕,孫佳年,孫楊;乙丙嵌段共聚物結(jié)構(gòu)與性能的關(guān)系[J];天津大學(xué)學(xué)報(bào);1994年04期
4 李欣欣,林佳雄,吳平平,韓哲文;原子轉(zhuǎn)移自由基聚合制備含氟嵌段共聚物及其性能[J];化學(xué)世界;2000年S1期
5 傅志峰,楊萬泰;原子轉(zhuǎn)移自由基聚合制備嵌段共聚物的研究進(jìn)展[J];北京化工大學(xué)學(xué)報(bào)(自然科學(xué)版);2000年03期
6 李虹,張兆斌,胡春圃,應(yīng)圣康;利用原子轉(zhuǎn)移自由基聚合制備水溶性含氟嵌段共聚物(英文)[J];合成橡膠工業(yè);2001年05期
7 梁暉,盧江,胡靜,鄧云祥;苯乙烯/α-蒎烯嵌段共聚物的性能研究[J];石油化工;2001年05期
8 常懷春,呂通建,郭文生;聚甲基丙烯酸甲酯-聚丙烯酰胺嵌段共聚物的合成與表征[J];應(yīng)用化學(xué);2001年08期
9 李鯤,郭建華,李欣欣,吳平平,韓哲文;原子轉(zhuǎn)移自由基聚合合成甲基丙烯酸丁酯與丙烯酸全氟烷基乙酯兩嵌段共聚物及其性能的研究[J];高分子學(xué)報(bào);2002年02期
10 張愛英,馮增國,張勇,巴建華;聚乙二醇-b-聚對苯二甲酸丁二醇酯嵌段共聚物降解行為的研究[J];高等學(xué);瘜W(xué)學(xué)報(bào);2003年06期
相關(guān)會(huì)議論文 前10條
1 黃建花;;雙親水嵌段共聚物存在下納米球自聚集的計(jì)算機(jī)模擬[A];中國化學(xué)會(huì)第二十五屆學(xué)術(shù)年會(huì)論文摘要集(下冊)[C];2006年
2 李一鳴;;嵌段共聚物與結(jié)構(gòu)不同的陰離子表面活性劑之間相互作用的對比研究[A];中國化學(xué)會(huì)第十二屆膠體與界面化學(xué)會(huì)議論文摘要集[C];2009年
3 趙玉榮;陳天宇;王新平;;成膜條件對苯乙烯/丁二烯嵌段共聚物表面結(jié)構(gòu)的影響[A];中國化學(xué)會(huì)第十二屆膠體與界面化學(xué)會(huì)議論文摘要集[C];2009年
4 施澤華;閔博飛;吳斌;諶東中;;新型線性-樹枝狀嵌段共聚物液晶的設(shè)計(jì)合成與表征[A];2009年全國高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(上冊)[C];2009年
5 李學(xué)進(jìn);梁好均;;嵌段共聚物體系的多尺度分子模擬研究[A];2009年全國高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(上冊)[C];2009年
6 李玉虎;宮玉梅;何天白;;溶劑擇優(yōu)親和性對溶液澆鑄嵌段共聚物薄膜相行為的影響[A];2009年全國高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(上冊)[C];2009年
7 于彬;李寶會(huì);史安昌;;兩嵌段共聚物在多種受限環(huán)境中的自組裝結(jié)構(gòu)[A];中國化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第07分會(huì)場摘要集[C];2010年
8 汪蓉;;嵌段共聚物薄膜相行為的理論模擬[A];中國化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第07分會(huì)場摘要集[C];2010年
9 魏朵;郭榮;;嵌段共聚物的親疏鏈長度對親水改性布洛芬/嵌段共聚物復(fù)合聚集體結(jié)構(gòu)的影響[A];中國化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第13分會(huì)場摘要集[C];2010年
10 王非;李春忠;;定向嵌段共聚物薄膜制備納米孔陣列模板[A];2004年全國高分子材料科學(xué)與工程研討會(huì)論文集[C];2004年
相關(guān)重要報(bào)紙文章 前4條
1 劉霞;分子“模板”可控制合成材料的形狀[N];科技日報(bào);2010年
2 陶文;陶氏推出九款開發(fā)型烯烴嵌段共聚物[N];中國化工報(bào);2008年
3 本報(bào)首席記者 姜澎;他在黑暗的未知中尋找光明[N];文匯報(bào);2012年
4 記者 吳苡婷;在微觀世界中精準(zhǔn)重構(gòu)[N];上?萍紙(bào);2012年
相關(guān)博士學(xué)位論文 前10條
1 高廣政;含多肽嵌段共聚物的合成與性能[D];復(fù)旦大學(xué);2007年
2 劉美嬌;嵌段共聚物自組裝形成復(fù)雜結(jié)構(gòu)的理論研究[D];復(fù)旦大學(xué);2013年
3 王亞芬;組裝體的形貌、結(jié)構(gòu)調(diào)控及機(jī)制[D];復(fù)旦大學(xué);2013年
4 江志斌;高分子在受限條件下的構(gòu)象和自組裝的理論模擬[D];南京大學(xué);2014年
5 馬世營;不同拓?fù)浣Y(jié)構(gòu)的兩親性嵌段共聚物在溶液中自組裝的理論模擬研究[D];南京大學(xué);2015年
6 于一濤;馬來酸酐改性苯乙烯/丁二烯嵌段共聚物的RAFT細(xì)乳液聚合與表征[D];浙江大學(xué);2011年
7 田洲;高性能多相聚丙烯共聚物制備的新方法—?dú)夥涨袚Q聚合過程及其模型化[D];浙江大學(xué);2012年
8 劉偉峰;乙烯/辛烯溶液共聚及其聚合物鏈結(jié)構(gòu)的調(diào)控[D];浙江大學(xué);2014年
9 黃杰;RAFT乳液聚合制備聚(苯乙烯—丙烯腈)嵌段共聚物及其共混物性能[D];浙江大學(xué);2015年
10 李超;二茂鐵基和(或)偶氮苯基化合物及其嵌段共聚物的合成及性能研究[D];浙江大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 張婷婷;兩嵌段共聚物在幾何受限下的自組裝動(dòng)力學(xué)研究[D];寧夏大學(xué);2015年
2 張?jiān)?雙親嵌段共聚物 PSt-b-P(St-alt-MA)-b-PAA的自組裝行為和乳化性能研究[D];南京理工大學(xué);2015年
3 朱曉玉;固體表面介導(dǎo)十二烷基磺基甜菜堿和雙親嵌段共聚物Pluronic P123聚集體結(jié)構(gòu)轉(zhuǎn)化研究[D];山東大學(xué);2015年
4 陳汀;嵌段共聚物PS-b-PLA薄膜自組裝形貌和結(jié)構(gòu)及應(yīng)用的研究[D];上海交通大學(xué);2015年
5 王德強(qiáng);基于N-乙烯基己內(nèi)酰胺的線形和四臂星形聚合物研究[D];云南師范大學(xué);2015年
6 馬陳雷;共價(jià)鍵與多重氫鍵鍵合的聚乳酸/聚乙二醇嵌段共聚物的制備與溶液自組裝[D];浙江大學(xué);2015年
7 姜文博;復(fù)雜嵌段共聚物在球形空間受限情況下的自組裝[D];溫州大學(xué);2015年
8 任鍇;基于聚異丁烯的嵌段共聚物的合成、表征及在生物醫(yī)用材料中的應(yīng)用[D];蘇州大學(xué);2015年
9 張晨;基于二噻吩并噻咯的熒光小分子和全共軛嵌段共聚物的合成、表征及性能研究[D];杭州師范大學(xué);2015年
10 周強(qiáng);熒光溫敏性丁二烯橡膠的合成及性能研究[D];北京化工大學(xué);2015年
本文編號(hào):2145863
本文鏈接:http://sikaile.net/kejilunwen/huagong/2145863.html