天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 化工論文 >

多重透射反射紅外光譜(MTR-IR)測量晶硅薄片碳氧含量和晶硅表面高分子刷圖案化

發(fā)布時(shí)間:2018-07-26 11:28
【摘要】:在CZ直拉法生產(chǎn)硅片的過程中,由于使用了石英(Si02)坩堝和石墨(C)加熱部件,所以在熔硅過程中會(huì)不同程度地引入氧碳雜質(zhì)。氧以間隙原子的形式存在于硅晶格中,故稱間隙氧(InterstitialOxygen,Oi)。碳在硅晶體中取代硅原子的位置,稱為代位碳(Substitutional Carbon,Cs)。間隙氧和代位碳是直拉(CZ)硅中氧碳的最主要存在形式,其含量的高低不僅影響硅材料的本征吸收,而且對材料的物理和導(dǎo)電特性產(chǎn)生影響。氧的不利之處是產(chǎn)生微缺陷,有利之處是對位錯(cuò)的延伸產(chǎn)生釘扎作用,增強(qiáng)硅片強(qiáng)度,其本征吸雜技術(shù)可防止生產(chǎn)工藝中缺陷的產(chǎn)生。高碳含量影響氧的成核和沉淀,還會(huì)導(dǎo)致器件軟化特性和二次擊穿。因此,硅中氧碳含量的控制成為改善材料性能的一種手段,然而,要控制氧碳含量首先必須測量準(zhǔn)確。利用雙嵌段共聚物聚苯乙烯-聚乙烯吡啶(polystyrene-block-poly-(4-vinyl pyridine),PS-b-P4VP;polystyrene-block-poly-(2-vinyl pyridine),PS-b-P2VP)在不同處理?xiàng)l件時(shí)發(fā)生相分離,產(chǎn)生一定規(guī)則圖案的特性,把雙嵌段共聚物制作成不同形貌的模版,如點(diǎn)狀、直線條狀、規(guī)則指紋狀等。然后利用這些模版,通過氫氟酸(Hydroflouricacid,HF)腐蝕、氧等離子刻蝕、反應(yīng)離子刻蝕(Reactive Ion Etching,RIE)等技術(shù)在硅片表面制作出各種由Si-Hx端和SiOx交替間隔組成的圖案,然后再在這些圖案基礎(chǔ)上接種各種高分子刷,從而實(shí)現(xiàn)各種不同的功能,如集成電路、生物芯片、微型化學(xué)反應(yīng)器等。本文中,一、我們利用多重透射-反射紅外光譜(Multiple Transmission-Re flection Infrared Spectroscopy,MTR-IR)法對太陽能電池用單晶硅片、薄單晶硅片、多晶硅片中代位碳和間隙氧含量進(jìn)行了紅外定量分析和相關(guān)理論探討。二、利用光刻技術(shù)和嵌段共聚物刻蝕技術(shù)在硅表面組裝聚甲基丙烯酸(Polymethacrylic Ac-id,PMAA)、甲基丙烯酸羥乙酯(2-HydroxyethylMethacrylate,HEMA)、聚甲基丙烯酸甲酯(Polymethylmethacrylate,PMMA)、聚N-異丙基丙烯酰胺(N-Iso Propyl acrylamide,PNIPAM)聚合物刷,使之成較規(guī)則圖案化分布。論文的主要研究內(nèi)容與結(jié)果如下:1、MTR-IR法和IR法測量太陽能電池硅片中間隙氧與代位碳含量的比較研究。我們最近開發(fā)了一種多重透射-反射傅立葉變換紅外光譜法(MIR-IR)用于測量太陽能電池硅片中間隙氧(Oi)和代位碳(Cs)含量,并和傳統(tǒng)的IR(Infrared)法進(jìn)行了比較,結(jié)果發(fā)現(xiàn)在1107 cm-1附近的氧吸收峰可以實(shí)現(xiàn)信號(hào)放大9~10倍,在605 cm-1處碳吸收峰可以實(shí)現(xiàn)信號(hào)放大7~8倍,從而可以將原有檢測限降低一個(gè)數(shù)量級(jí),提高檢出的靈敏度。多次重復(fù)測量的結(jié)果證實(shí)了 MTR-IR法的準(zhǔn)確性與重現(xiàn)性。另外,相比較于垂直入射和布儒斯特角單次透射,MTR法可以極大程度地減少薄硅片(厚度≤ 0.3 mm)內(nèi)部多重反射透射引起的干涉條紋的振幅。并對干涉條紋減少的機(jī)理進(jìn)行了探討。一是積分球作用(相消干涉)即反射光和透射光的波峰與波谷分別加和抵消;二是布儒斯特角時(shí)p偏振光沒有反射(硅片內(nèi)部不產(chǎn)生反射),全部透過,從而減少干涉條紋。并利用p偏振光計(jì)算公式對0.1mm、0.2 mm薄硅片中的代位碳、間隙氧含量進(jìn)行了計(jì)算。對s偏振光和p偏振光的薄硅片紅外圖譜進(jìn)行了模擬,并解釋了 p偏振吸收峰總是比s偏振吸收峰高的原因。對多晶硅中碳氧含量分布情況進(jìn)行了分析,對1.0 mm多晶硅中間隙氧和代位碳含量進(jìn)行了測量,并和IR法進(jìn)行了比較,無論從準(zhǔn)確性還是從重現(xiàn)性均優(yōu)于IR法。2、嵌段共聚物PS-b-P4VP為模版制備高分子刷點(diǎn)陣納米圖案。兩親性嵌段共聚物PS-b-P4VP在甲苯溶液里自組裝成膠束,旋涂在硅片上形成PS作基質(zhì)背景、P4VP形成突出于PS基質(zhì)背景的50~80nm的圓點(diǎn),用稀HF溶液腐蝕得到了孔徑分布在50~80 nm之間較均勻的圓形納米坑,腐蝕的機(jī)理是因P4VP膠束親水、而且HF能使P4VP中的吡啶環(huán)質(zhì)子化,故蝕刻選擇性地發(fā)生在P4VP膠束的下方。先用稀HF溶液腐蝕平面硅得到表面懸掛的Si-Hx鍵,再通過硅氫化反應(yīng)共價(jià)偶聯(lián)上末端帶叔烷基溴引發(fā)基團(tuán)的單分子膜,末端叔烷基溴能引發(fā)表面原子轉(zhuǎn)移自由基聚合反應(yīng)(Surface-Induced Atom Transfer Rad icalPolymerization,SI-ATRP),使用單體甲基丙烯酸羥乙酯(HEMA)、甲基丙烯酸鈉(NaMA)、甲基丙烯酸甲酯(MMA)、N-異丙基丙烯酰胺(NIPAM)在硅表面經(jīng) SI-ATRP 組裝了多種聚合物刷 Si-g-Poly(HEMA/PMAA/PMMA/PNIPAM),得到了凸出表面的點(diǎn)陣狀圖案。整個(gè)過程用多次透射反射紅外光譜(MTR-IR),原子力顯微鏡(AFM)和掃描電子顯微鏡(SEM)進(jìn)行檢測,證實(shí)了在硅表面聚合物刷圖案陣列的形成過程。3、嵌段共聚物PS-b-P2VP為模版制備高分子刷線狀或指紋狀納米圖案。兩親性嵌段共聚物PS-b-P2VP在甲苯溶液里自組裝成膠束,旋涂在硅片上形成PS作基質(zhì)背景、P2VP形成突出于PS基質(zhì)背景的20~30 nm的圓點(diǎn)。然后在10:1 THF/H2O溶劑蒸汽密閉環(huán)境中室溫下放置30~40 h,形成PS-b-P2VP直線條或指紋狀圖案,然后在Na2PtCl4/HCl溶液中浸泡3~24 h,帶正電荷的[P2VP]+和帶負(fù)電荷的[PtCl4]2-靜電吸引結(jié)合在一起,用O2等離子體處理除去PS-b-P2VP,同時(shí)使Na2PtCl4生成Pt線條。用1:1:4 HF/H2O2/EtOH的陽極輔助溶液腐蝕得到了間距在50~80nm之間,帶寬30~50 nm的線狀或指紋狀條紋,腐蝕的機(jī)理是Pt所處位點(diǎn)的原電池反應(yīng)機(jī)理,最后在線狀條紋的納米坑處組裝PMAA,得到線條狀或指紋狀的PMAA圖案。圖案的形貌用掃描電子顯微鏡(SEM)和原子力顯微鏡(AFM)進(jìn)行觀測。
[Abstract]:In the process of producing silicon wafers by CZ direct drawing, because of the use of quartz (Si02) crucible and graphite (C) heating components, oxygen carbon impurities will be introduced to different degrees in the process of melting silicon. Oxygen is in the form of interstitial atoms in the form of interstitial oxygen (InterstitialOxygen, Oi). The position of carbon in silicon crystal is called substitution of silicon atoms. Substitutional Carbon (Cs). Interstitial oxygen and subrogation carbon are the most important forms of oxygen and carbon in Si (CZ) silicon. Their content not only affects the intrinsic absorption of silicon materials, but also influences the physical and electrical properties of the materials. The disadvantage of oxygen is to produce micro defects, and the advantage is to produce pinning effect on the extension of dislocation. In order to enhance the strength of the silicon wafer, its intrinsic impurity absorption technology can prevent the production of defects in the production process. The high carbon content affects the nucleation and precipitation of oxygen, and also leads to the softening and two breakdown of the devices. Therefore, the control of oxygen and carbon content in silicon becomes a means to improve the material performance. However, the control of oxygen carbon content must first be measured accurately. A double block copolymer polystyrene polyvinyl pyridine (polystyrene-block-poly- (4-vinyl pyridine), PS-b-P4VP; polystyrene-block-poly- (2-vinyl pyridine), PS-b-P2VP) is separated at different treatment conditions and produces a certain rule pattern. The double block copolymer is made into a template with different morphologies, such as dot and linear strip. And then using these templates, using Hydroflouricacid (HF) corrosion, oxygen plasma etching, reactive ion etching (Reactive Ion Etching, RIE), and other techniques, such as Reactive Ion Etching, RIE, and other techniques made of alternating intervals of Si-Hx ends and SiOx, and then inoculating various polymer brushes on the basis of these patterns. To achieve various functions, such as integrated circuits, biochips, micro chemical reactors, and so on. In this paper, in this paper, we use Multiple Transmission-Re flection Infrared Spectroscopy (MTR-IR) method for single crystal silicon, thin monocrystalline silicon, and interstitial carbon and interstitial oxygen in solar cells. The content was analyzed by infrared quantitative analysis and related theory. Two, using photolithography and block copolymer etching technology to assemble polymethacrylic acid (Polymethacrylic Ac-id, PMAA), hydroxyethyl methacrylate (2-HydroxyethylMethacrylate, HEMA), Polymethylmethacrylate, PMMA, poly N- isopropyl on the silicon surface N-Iso Propyl acrylamide (PNIPAM) polymer brushes make it more regular patterned. The main contents and results of this paper are as follows: 1, MTR-IR and IR methods for measuring the content of intermediate gap oxygen and subrogation carbon in solar cell silicon wafers. We have recently opened a multiple transmission reflection Fu Liye transform infrared spectroscopy. The method (MIR-IR) is used to measure the content of intermediate gap oxygen (Oi) and subrogation carbon (Cs) in solar cell silicon. Compared with the traditional IR (Infrared) method, it is found that the oxygen absorption peak near 1107 cm-1 can enlarge the 9~10 times of the signal amplification, and the carbon absorption peak at 605 cm-1 can magnify the signal 7~8 times, thus the original detection limit can be reduced. The results of repeated measurements confirm the accuracy and reproducibility of the MTR-IR method. In addition, compared to the vertical incidence and the single transmission of Brewster angle, the MTR method can greatly reduce the amplitude of the interference fringes caused by the multiple reflection and transmission of the thin silicon wafer (thickness less than 0.3 mm). The mechanism of stripe reduction is discussed. One is the integral ball effect (cancellation interference), that is, the wave peak of reflected light and transmitted light is added and offset respectively. Two is that the P polarized light is not reflected in the Brewster angle (no reflection inside the silicon wafer), and all through, thus reducing the dry fringe. And using the P polarized light calculation formula to 0.1mm, 0.2 mm thin. The substitution carbon and the gap oxygen content in the silicon wafer were calculated. The infrared spectra of the thin silicon wafers with S polarized light and P polarized light were simulated, and the reason that the p polarization absorption peak was always higher than the S polarization absorption peak was explained. The distribution of carbon and oxygen content in the polysilicon was analyzed, and the middle gap oxygen and the subrogation carbon content of the 1 mm polysilicon were carried out. The measurements were compared with the IR method. Both the accuracy and the reproducibility were better than the IR.2, and the block copolymer PS-b-P4VP was used as a template to prepare the polymer brush lattice nanoscale pattern. The two amphiphilic block copolymer PS-b-P4VP was self assembled into a micelle in the toluene solution, and PS was formed on the silicon wafer to form a matrix background, and P4VP formed out of the PS matrix back. The circular point of the 50~80nm in the scene is corroded by a dilute HF solution. The corrosion mechanism is that the P4VP micelle is hydrophilic and the HF can make the pyridine rings protonated in P4VP, so the etching selectively occurs under the P4VP micelles. The surface suspended Si-H is obtained by etching the plane silicon with a dilute HF solution. The X bond is covalently coupled to the monolayer of the terminal alkyl bromide initiator by the hydrosilylation reaction, and the terminal TERT alkyl bromide can trigger the surface atom transfer radical polymerization (Surface-Induced Atom Transfer Rad icalPolymerization, SI-ATRP), using the monomer methyl methacrylate (HEMA), sodium methacrylate (NaMA), methyl propyl Methyl enate (MMA) and N- isopropyl acrylamide (NIPAM) have been assembled on the silicon surface by a variety of polymer brushes, Si-g-Poly (HEMA/PMAA/PMMA/PNIPAM), and a lattice pattern on the convex surface is obtained. The whole process is detected by multiple transmission reflectance infrared spectroscopy (MTR-IR), atomic force microscopy (AFM) and scanning electron microscopy (SEM). The formation process of the polymer brush pattern array on the silicon surface.3, the block copolymer PS-b-P2VP is used as a template to prepare the polymer brushed linear or fingerprint like nanoscale pattern. Two Pro block copolymer PS-b-P2VP is self assembled into a micelle in the toluene solution, and PS is formed on the silicon wafer to form a matrix background, and P2VP forms a 20~30 nm that outburst the background of the PS matrix. And then put 30~40 h at room temperature at room temperature in a 10:1 THF/H2O solvent vapor tight environment, forming a PS-b-P2VP straight strip or fingerprint pattern, then soaking 3~24 h in Na2PtCl4/HCl solution, combining positive charge [P2VP]+ with negative charged [PtCl4]2- electrostatic attraction together, removing PS-b-P2VP with O2 plasma treatment, and making Na2 PtCl4 generates Pt lines. Using 1:1:4 HF/H2O2/EtOH anode assisted solution corrosion, the linear or fingerprint stripes between 50 and 80nm and 30~50 nm are obtained. The mechanism of corrosion is the primary cell reaction mechanism at the site of Pt. Finally, the PMAA is assembled at the nanoscale pits at the line stripe. The pattern of line or fingerprint like PMAA pattern is obtained. The morphology was observed by scanning electron microscope (SEM) and atomic force microscope (AFM).
【學(xué)位授予單位】:南京大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TQ127.2

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 李呂qG,趙國良;嵌段共聚物微觀分相理論[J];大連工學(xué)院學(xué)報(bào);1980年01期

2 羅筱烈,馬德柱,蔣文博;聚對苯二甲酸丁二醇酯-聚∈-己內(nèi)酯嵌段共聚物鏈化學(xué)結(jié)構(gòu)研究[J];中國科學(xué)技術(shù)大學(xué)學(xué)報(bào);1990年02期

3 許曉秋,,黃樹基,李鳳英,邢利燕,孫佳年,孫楊;乙丙嵌段共聚物結(jié)構(gòu)與性能的關(guān)系[J];天津大學(xué)學(xué)報(bào);1994年04期

4 李欣欣,林佳雄,吳平平,韓哲文;原子轉(zhuǎn)移自由基聚合制備含氟嵌段共聚物及其性能[J];化學(xué)世界;2000年S1期

5 傅志峰,楊萬泰;原子轉(zhuǎn)移自由基聚合制備嵌段共聚物的研究進(jìn)展[J];北京化工大學(xué)學(xué)報(bào)(自然科學(xué)版);2000年03期

6 李虹,張兆斌,胡春圃,應(yīng)圣康;利用原子轉(zhuǎn)移自由基聚合制備水溶性含氟嵌段共聚物(英文)[J];合成橡膠工業(yè);2001年05期

7 梁暉,盧江,胡靜,鄧云祥;苯乙烯/α-蒎烯嵌段共聚物的性能研究[J];石油化工;2001年05期

8 常懷春,呂通建,郭文生;聚甲基丙烯酸甲酯-聚丙烯酰胺嵌段共聚物的合成與表征[J];應(yīng)用化學(xué);2001年08期

9 李鯤,郭建華,李欣欣,吳平平,韓哲文;原子轉(zhuǎn)移自由基聚合合成甲基丙烯酸丁酯與丙烯酸全氟烷基乙酯兩嵌段共聚物及其性能的研究[J];高分子學(xué)報(bào);2002年02期

10 張愛英,馮增國,張勇,巴建華;聚乙二醇-b-聚對苯二甲酸丁二醇酯嵌段共聚物降解行為的研究[J];高等學(xué);瘜W(xué)學(xué)報(bào);2003年06期

相關(guān)會(huì)議論文 前10條

1 黃建花;;雙親水嵌段共聚物存在下納米球自聚集的計(jì)算機(jī)模擬[A];中國化學(xué)會(huì)第二十五屆學(xué)術(shù)年會(huì)論文摘要集(下冊)[C];2006年

2 李一鳴;;嵌段共聚物與結(jié)構(gòu)不同的陰離子表面活性劑之間相互作用的對比研究[A];中國化學(xué)會(huì)第十二屆膠體與界面化學(xué)會(huì)議論文摘要集[C];2009年

3 趙玉榮;陳天宇;王新平;;成膜條件對苯乙烯/丁二烯嵌段共聚物表面結(jié)構(gòu)的影響[A];中國化學(xué)會(huì)第十二屆膠體與界面化學(xué)會(huì)議論文摘要集[C];2009年

4 施澤華;閔博飛;吳斌;諶東中;;新型線性-樹枝狀嵌段共聚物液晶的設(shè)計(jì)合成與表征[A];2009年全國高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(上冊)[C];2009年

5 李學(xué)進(jìn);梁好均;;嵌段共聚物體系的多尺度分子模擬研究[A];2009年全國高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(上冊)[C];2009年

6 李玉虎;宮玉梅;何天白;;溶劑擇優(yōu)親和性對溶液澆鑄嵌段共聚物薄膜相行為的影響[A];2009年全國高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(上冊)[C];2009年

7 于彬;李寶會(huì);史安昌;;兩嵌段共聚物在多種受限環(huán)境中的自組裝結(jié)構(gòu)[A];中國化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第07分會(huì)場摘要集[C];2010年

8 汪蓉;;嵌段共聚物薄膜相行為的理論模擬[A];中國化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第07分會(huì)場摘要集[C];2010年

9 魏朵;郭榮;;嵌段共聚物的親疏鏈長度對親水改性布洛芬/嵌段共聚物復(fù)合聚集體結(jié)構(gòu)的影響[A];中國化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第13分會(huì)場摘要集[C];2010年

10 王非;李春忠;;定向嵌段共聚物薄膜制備納米孔陣列模板[A];2004年全國高分子材料科學(xué)與工程研討會(huì)論文集[C];2004年

相關(guān)重要報(bào)紙文章 前4條

1 劉霞;分子“模板”可控制合成材料的形狀[N];科技日報(bào);2010年

2 陶文;陶氏推出九款開發(fā)型烯烴嵌段共聚物[N];中國化工報(bào);2008年

3 本報(bào)首席記者 姜澎;他在黑暗的未知中尋找光明[N];文匯報(bào);2012年

4 記者 吳苡婷;在微觀世界中精準(zhǔn)重構(gòu)[N];上?萍紙(bào);2012年

相關(guān)博士學(xué)位論文 前10條

1 高廣政;含多肽嵌段共聚物的合成與性能[D];復(fù)旦大學(xué);2007年

2 劉美嬌;嵌段共聚物自組裝形成復(fù)雜結(jié)構(gòu)的理論研究[D];復(fù)旦大學(xué);2013年

3 王亞芬;組裝體的形貌、結(jié)構(gòu)調(diào)控及機(jī)制[D];復(fù)旦大學(xué);2013年

4 江志斌;高分子在受限條件下的構(gòu)象和自組裝的理論模擬[D];南京大學(xué);2014年

5 馬世營;不同拓?fù)浣Y(jié)構(gòu)的兩親性嵌段共聚物在溶液中自組裝的理論模擬研究[D];南京大學(xué);2015年

6 于一濤;馬來酸酐改性苯乙烯/丁二烯嵌段共聚物的RAFT細(xì)乳液聚合與表征[D];浙江大學(xué);2011年

7 田洲;高性能多相聚丙烯共聚物制備的新方法—?dú)夥涨袚Q聚合過程及其模型化[D];浙江大學(xué);2012年

8 劉偉峰;乙烯/辛烯溶液共聚及其聚合物鏈結(jié)構(gòu)的調(diào)控[D];浙江大學(xué);2014年

9 黃杰;RAFT乳液聚合制備聚(苯乙烯—丙烯腈)嵌段共聚物及其共混物性能[D];浙江大學(xué);2015年

10 李超;二茂鐵基和(或)偶氮苯基化合物及其嵌段共聚物的合成及性能研究[D];浙江大學(xué);2015年

相關(guān)碩士學(xué)位論文 前10條

1 張婷婷;兩嵌段共聚物在幾何受限下的自組裝動(dòng)力學(xué)研究[D];寧夏大學(xué);2015年

2 張?jiān)?雙親嵌段共聚物 PSt-b-P(St-alt-MA)-b-PAA的自組裝行為和乳化性能研究[D];南京理工大學(xué);2015年

3 朱曉玉;固體表面介導(dǎo)十二烷基磺基甜菜堿和雙親嵌段共聚物Pluronic P123聚集體結(jié)構(gòu)轉(zhuǎn)化研究[D];山東大學(xué);2015年

4 陳汀;嵌段共聚物PS-b-PLA薄膜自組裝形貌和結(jié)構(gòu)及應(yīng)用的研究[D];上海交通大學(xué);2015年

5 王德強(qiáng);基于N-乙烯基己內(nèi)酰胺的線形和四臂星形聚合物研究[D];云南師范大學(xué);2015年

6 馬陳雷;共價(jià)鍵與多重氫鍵鍵合的聚乳酸/聚乙二醇嵌段共聚物的制備與溶液自組裝[D];浙江大學(xué);2015年

7 姜文博;復(fù)雜嵌段共聚物在球形空間受限情況下的自組裝[D];溫州大學(xué);2015年

8 任鍇;基于聚異丁烯的嵌段共聚物的合成、表征及在生物醫(yī)用材料中的應(yīng)用[D];蘇州大學(xué);2015年

9 張晨;基于二噻吩并噻咯的熒光小分子和全共軛嵌段共聚物的合成、表征及性能研究[D];杭州師范大學(xué);2015年

10 周強(qiáng);熒光溫敏性丁二烯橡膠的合成及性能研究[D];北京化工大學(xué);2015年



本文編號(hào):2145863

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huagong/2145863.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶084b2***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com
国产成人亚洲精品青草天美| 成人综合网视频在线观看| 久久99精品日韩人妻| 精品熟女少妇av免费久久野外| 91麻豆精品欧美一区| 久久精品a毛片看国产成人| 日韩中文字幕欧美亚洲| 欧美日韩国产亚洲三级理论片| 欧美六区视频在线观看| 办公室丝袜高跟秘书国产| 色哟哟国产精品免费视频| 亚洲精品av少妇在线观看| 国产一级片内射视频免费播放| 草草视频福利在线观看| 情一色一区二区三区四| 国产精品成人又粗又长又爽| 欧美日韩精品久久第一页| 国产一区二区不卡在线视频| 青青操视频在线播放免费| 国产精品成人一区二区在线| 欧美国产日产综合精品| 午夜福利视频日本一区| 国产福利一区二区三区四区| 免费观看潮喷到高潮大叫| 婷婷激情四射在线观看视频| 日韩精品第一区二区三区| 极品熟女一区二区三区| 亚洲熟女国产熟女二区三区| 亚洲熟妇熟女久久精品 | 婷婷亚洲综合五月天麻豆| 亚洲一区二区三区一区| 日本午夜福利视频免费观看| 欧美午夜伦理在线观看| 亚洲一区二区精品福利| 一区二区三区日韩经典| 亚洲天堂精品一区二区| 五月婷婷六月丁香在线观看| 九九热精彩视频在线播放| 熟女乱一区二区三区丝袜| 男人的天堂的视频东京热| 色小姐干香蕉在线综合网|