面向堿性燃料電池應用的陰離子交換膜的設計與制備
本文選題:堿性聚合物燃料電池 + 陰離子交換膜 ; 參考:《中國科學技術大學》2015年博士論文
【摘要】:聚合物電解質膜燃料電池作為清潔的新能源,由于其具有工作溫度低、啟動時間短、功率密度高等特點,近年來倍受關注。通常,聚合物電解質膜燃料電池會分為兩類:質子交換膜燃料電池(PEMFCs)和堿性陰離子交換膜燃料電池(AAEMFCs)。相比于廣泛研究的PEMFCs, AAEMFCs具有電極反應效率高、燃料泄漏率低,特別是允許非貴金屬催化劑的使用等優(yōu)勢,逐漸成為研究熱點。陰離子交換膜作為AAEMFCs重要組成部分,它在燃料電池起到催化劑支撐體、為電極反應提供環(huán)境、隔離氣體或燃料、為氫氧根提供傳輸通道等作用,它的性能直接決定燃料電池的性能、壽命和效率。但對于陰離子交換膜,目前尚未出現如質子交換膜中的全氟磺酸膜(Nafion)綜合性能優(yōu)異的膜。氫氧根電導率低、尺寸穩(wěn)定性和堿性穩(wěn)定性差是現有陰膜中普遍存在的問題,極大地限制了AAEMFCs的發(fā)展。因此,開發(fā)高氫氧根電導率、高堿性穩(wěn)定性的陰離子交換膜材料,對AAEMFC的發(fā)展和實際應用具有重大意義。 Nafion膜的微觀結構-性能之間的研究表明,在膜體系內構建貫穿的離子通道是提高離子膜電導率的重要途徑。因此,設計具有傳導氫氧根能力的接枝型聚合物,可以通過自組裝來構建貫穿離子通道,從而可以獲得高氫氧根電導率的陰離子交換膜。另一方面,為了解決陰離子交換膜的耐堿性挑戰(zhàn),有必要設計新型的堿性功能基團。在這一背景下,本文主要研究內容如下: (1)以聚偏氟乙烯(PVDF)為主體,使用原子轉移自由基聚合(ATRP)制備的接枝型陰離子交換膜,由于具有一定的相分離,所獲得膜氫氧根電導率性能較為優(yōu)異。此外,由于主鏈PVDF具有一定的結晶性能,膜的機械性能和熱性能也尤為優(yōu)異。 (2)以溴化聚苯醚(BPPO)為主體,使用電子轉移再生催化劑原子轉移自由基聚合(ARGET ATRP)制備梳型的陰離子交換膜。梳型結構具有高的接枝密度和低的接枝長度,可以形成理想的相分離形貌,因而膜的氫氧根電導率性能優(yōu)異,80℃下高達100mS/cm。然而,其它燃料電池相關性能仍需要進一步優(yōu)化。 (3)在研究(2)基礎上,對接枝聚合物結構參數進一步優(yōu)化。選用低溴化度的聚苯醚(PPO),并對催化劑用量進行優(yōu)化,制備低接枝密度、高接枝長度的Rod-Coil型陰離子交換膜。Rod-Coil型陰離子交換膜不僅能夠完成理想的微觀相分離,獲得優(yōu)異的氫氧根傳導性能,90℃下電導率高達198mS/cm。Rod-Coil型陰離子交換膜由于接枝密度較低的特點,側鏈對主鏈的影響小,還可以實現對膜的耐堿性能的提高。這個研究實現了從大分子結構設計的角度,同時實現了氫氧根電導率和耐堿性能的提高。這個研究也提供了一個制備優(yōu)異陰離子交換膜的新思路。 (4)在陰離子交換膜中引入交聯結構可以有效抑制膜的溶脹、提高膜的耐堿性能和熱穩(wěn)定性。然而,交聯會阻隔膜內的離子通道,降低膜的氫氧根電導率。通過選用與接枝型陰離子交換膜主鏈具有相同組成的大分子交聯劑(BPPO),不僅可以實現有效的交聯,而且可以不破壞離子膜內相分離形貌。所制備的膜實現提高膜穩(wěn)定性的同時,不降低膜的氫氧根電導率。這個研究提供了一個在膜體系內設計合理交聯結構的新思路。 (5)選用1-甲基咪唑(MIm)對溴化聚苯醚(BPPO)進行堿性功能化,制備咪唑型陰離子交換膜。由于咪唑環(huán)的五元雜環(huán)結構和π共軛結構的存在,可以有效阻擋氫氧根對其進攻。并且,咪唑的獨有的結構可以在高溫下表現出較強的熱穩(wěn)定性。所以,咪唑型陰離子交換膜的耐堿性能和熱穩(wěn)定性能相比于傳統的季銨型陰離子交換膜都有所提高。咪唑型膜的單電池輸出功率為30mW/cm2.
[Abstract]:As a new clean energy, polymer electrolyte membrane fuel cell has attracted much attention in recent years because of its low working temperature, short start time and high power density. Usually, polymer electrolyte membrane fuel cells will be divided into two types: proton exchange membrane fuel cell (PEMFCs) and alkaline anion exchange membrane fuel cell (AAEMFCs). Compared to the widely studied PEMFCs, AAEMFCs has the advantages of high efficiency of electrode reaction, low fuel leakage rate, especially the use of non noble metal catalysts, and has gradually become a hot spot. As an important component of AAEMFCs, anionic exchange membrane plays a catalyst support in fuel cell, provides an environment for electrode reaction, isolating gas or Fuel, which provides a transmission channel for hydroxyl, its performance directly determines the performance, life and efficiency of the fuel cell. But for the anion exchange membrane, there has not been a membrane with excellent comprehensive performance, such as the perfluoro sulfonic membrane (Nafion) in the proton exchange membrane. The low conductivity of hydroxyl, the poor dimensional stability and poor basic stability are the existing negative factors. The widespread problems in the membrane greatly restrict the development of AAEMFCs. Therefore, the development of the anion exchange membrane materials with high hydrogen oxygen root conductivity and high alkaline stability is of great significance to the development and practical application of AAEMFC.
The study of the microstructure and properties of the Nafion film shows that the construction of the ion channel in the membrane system is an important way to improve the conductivity of the ionic membrane. Therefore, the design of the graft polymer with the ability to conduct the hydroxyl radicals can be constructed through self-assembly, and the conductivity of the high hydroxyl radicals can be obtained. On the other hand, in order to solve the alkali resistance challenge of the anion exchange membrane, it is necessary to design new basic functional groups. In this context, the main contents of this paper are as follows:
(1) the grafting type anion exchange membrane prepared with polyvinylidene fluoride (PVDF) and atomic transfer radical polymerization (ATRP) has excellent electrical conductivity performance because of a certain phase separation. In addition, the mechanical and thermal properties of the membrane are particularly excellent because the main chain PVDF has a certain nodal properties.
(2) with brominated polyphenyl ether (BPPO) as the main body, the comb type anion exchange membrane is prepared by electron transfer regeneration catalyst atom transfer free radical polymerization (ARGET ATRP). The comb structure has high grafting density and low grafting length, which can form ideal phase separation morphology. Therefore, the conductivity of hydroxyl radicals of the membrane is excellent and is up to 100m at 80. S/cm. however, other fuel cell performance needs to be further optimized.
(3) on the basis of the study (2), the structural parameters of the graft polymer were further optimized. The low brominated polyphenylene ether (PPO) was selected and the amount of the catalyst was optimized to prepare the Rod-Coil anion exchange membrane.Rod-Coil anion exchange membrane with low grafting density and high grafting length, which not only can complete the ideal microscopic phase separation, but also obtain excellent results. With the conductivity of hydroxyl, the conductivity of the 198mS/cm.Rod-Coil type anion exchange membrane at 90 degrees centigrade is low because of the low density of the graft. The side chain has little influence on the main chain, and it can also improve the alkali resistance of the membrane. This study realized the electrical conductivity and alkali resistance of the hydroxyl group at the angle of the design of the macromolecular structure. This study also provides a new idea for preparing excellent anion exchange membrane.
(4) the introduction of crosslinking structure in the anion exchange membrane can effectively inhibit the swelling of the membrane and improve the alkali resistance and thermal stability of the membrane. However, the crosslinking will obstruct the ionic channel in the membrane and reduce the conductivity of the hydroxyl radical of the membrane. By selecting the large molecular crosslinker (BPPO), which has the same composition as the main chain of the graft anion exchange membrane, it can not only be used. The effective crosslinking can be achieved without destroying the phase separation morphology of the ionic membrane. The prepared membranes can improve the stability of the membrane and do not reduce the conductivity of the hydroxyl radicals. This study provides a new idea for the design of a reasonable crosslinking structure in the membrane system.
(5) 1- methyl imidazole (MIm) was used for the alkaline functionalization of brominated polyphenylene ether (BPPO), and imidazole anion exchange membrane was prepared. Because of the five membered heterocyclic structure and the existence of the conjugated structure of the imidazole ring, it could effectively prevent the hydrogen peroxide from attacking it. The alkali resistance and thermal stability of the imidazole anion exchange membrane are improved compared with the traditional quaternary ammonium anion exchange membrane. The output power of the imidazole film is 30mW/cm2.
【學位授予單位】:中國科學技術大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:TM911.4;TQ425.236
【共引文獻】
相關期刊論文 前10條
1 朱紅,許韻華,李戰(zhàn)國;質子交換膜燃料電池的研究進展[J];北方交通大學學報;2003年06期
2 王金龍;王登峰;陳靜;劉彬娜;黃文雪;;影響車用質子交換膜燃料電池性能的諸因素分析及試驗[J];北京交通大學學報;2007年06期
3 張健,張政;交指型電極的質子交換膜燃料電池陰極內傳質過程的數值模擬[J];北京化工大學學報(自然科學版);2003年05期
4 王金龍;王登峰;陳書明;;車用直流道質子交換膜燃料電池性能仿真及試驗研究[J];長春理工大學學報(自然科學版);2010年01期
5 李廣龍;周利;王英旭;王鵬杰;林化新;朱秀玲;邵志剛;;直接內重整熔融碳酸鹽燃料電池中甲烷蒸汽重整催化劑探索性研究[J];催化學報;2011年01期
6 任茂賓,王宇新,許莉;燃料電池流場板新材料的研究[J];材料導報;2002年09期
7 孟建波;桑革;羅學建;;PEMFC電催化劑研究進展[J];材料導報;2006年S2期
8 陳云俊;孫毅;崔志偉;康高英;;氧化釓摻雜氧化鈰勢函數的綜述[J];材料導報;2010年19期
9 祝鵬;史可人;谷曉昱;徐日煒;吳一弦;;在線紅外光譜法研究聚乙烯基芐基氯的交聯反應動力學[J];材料導報;2012年04期
10 高春梅,李清;以燃氣為燃料的燃料電池及其應用的探討[J];城市燃氣;2002年10期
相關會議論文 前6條
1 張勝剛;郭琰輝;林形形;王建黎;計建炳;;磺化聚醚醚酮/聚芳醚酮-苯并咪唑復合質子交換膜的制備與性能研究[A];第七屆中國功能材料及其應用學術會議論文集(第3分冊)[C];2010年
2 張t,
本文編號:2070212
本文鏈接:http://sikaile.net/kejilunwen/huagong/2070212.html