基于貝葉斯模型的化工過(guò)程動(dòng)態(tài)風(fēng)險(xiǎn)研究
發(fā)布時(shí)間:2018-06-13 11:05
本文選題:貝葉斯理論 + copula函數(shù)。 參考:《華東理工大學(xué)》2015年碩士論文
【摘要】:隨著化學(xué)工業(yè)的快速發(fā)展,化工對(duì)象生產(chǎn)負(fù)荷不斷提高,其安全問(wèn)題受到越來(lái)越高的重視。目前,化工過(guò)程風(fēng)險(xiǎn)分析領(lǐng)域的相關(guān)研究主要集中于如何有效實(shí)現(xiàn)對(duì)化工過(guò)程的故障檢測(cè)和診斷,而很少有專(zhuān)家從化工過(guò)程安全傳導(dǎo)機(jī)理出發(fā)建立化工過(guò)程事件的評(píng)價(jià)模型。為此,本文基于貝葉斯模型建立化工過(guò)程班組操作的動(dòng)態(tài)風(fēng)險(xiǎn)評(píng)估模型。 本文以特定的化工生產(chǎn)裝置為例,利用基于事故序列先導(dǎo)數(shù)據(jù)的貝葉斯模型來(lái)定量分析班組人員操作對(duì)化工風(fēng)險(xiǎn)的影響。輪班班組的操作能力以及不同班組之間的關(guān)聯(lián)性對(duì)化工生產(chǎn)過(guò)程的安全性影響很大,而copula函數(shù)可以體現(xiàn)不同變量之間復(fù)雜的非線性關(guān)系。另外,copula函數(shù)種類(lèi)繁多,然而在數(shù)據(jù)很少的情況下copula的選取至關(guān)重要。為了排除人為給定先驗(yàn)參數(shù)的影響,在此利用無(wú)信息先驗(yàn)的最大熵方法選擇copula函數(shù)類(lèi)型。因此,考慮到不同班組操作的時(shí)序性和耦合性,本文利用貝葉斯理論結(jié)合copula函數(shù),提出了基于班組操作機(jī)理分析的最大熵條件概率模型和基于班組操作數(shù)據(jù)信息的MCMC抽樣分析方法來(lái)定量地評(píng)估班組在事件樹(shù)模型中操作能力的風(fēng)險(xiǎn)差異性。 此外,在異常事件發(fā)生之后,系統(tǒng)運(yùn)行的最終狀態(tài)受到班組操作的影響,通過(guò)研究每個(gè)時(shí)間段內(nèi)班組操作導(dǎo)致3類(lèi)運(yùn)行狀態(tài)發(fā)生的概率來(lái)定量評(píng)估不同班組操作的可靠性。因此,在建立高溫異常事件樹(shù)模型的基礎(chǔ)上,本文通過(guò)分析和比較每個(gè)班組操作期間所導(dǎo)致裝置出現(xiàn)不同運(yùn)行狀態(tài)的風(fēng)險(xiǎn)概率均值來(lái)反映班組整體的操作能力。
[Abstract]:With the rapid development of chemical industry, the production load of chemical industry is increasing, and the security problem has been paid more and more attention. At present, the related research in the field of chemical process risk analysis is mainly focused on how to effectively realize the fault detection and diagnosis of chemical process, but few experts start from the mechanism of chemical process safety transmission. For this purpose, this paper establishes a dynamic risk assessment model for chemical process team operation based on Bayes model.
This paper takes a specific chemical production device as an example to analyze the effect of the group operation on the chemical risk by using the Bayesian model based on the pilot data of the accident sequence. The operation ability of the shift group and the association between the different groups have a great influence on the safety of the chemical production process, and the copula function can reflect the difference. The complex nonlinear relationship between variables. In addition, there are a wide variety of Copula Functions. However, the selection of Copula is very important in the case of little data. In order to exclude the influence of human given prior parameters, the maximum entropy method without information prior is used to select the copula function type. By combining the Bayesian theory with the copula function, the maximum entropy conditional probability model based on the analysis of group operation mechanism and the MCMC sampling analysis method based on the group operation data information are proposed to quantitatively evaluate the risk difference of the operation ability of the group in the event tree model.
In addition, after the occurrence of abnormal events, the final state of the system is affected by the operation of the group. By studying the probability of the 3 classes of running states in each time period, the reliability of the operation is evaluated quantitatively. Therefore, on the basis of the establishment of a high temperature anomaly event tree model, this paper analyzes and compares the results. The average risk probability of different operation states caused by each team operation reflects the overall operational ability of the team.
【學(xué)位授予單位】:華東理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TQ086;TP18
【參考文獻(xiàn)】
相關(guān)期刊論文 前1條
1 羅樺檳,張世英;事件樹(shù)方法的貝葉斯分析[J];系統(tǒng)工程與電子技術(shù);1999年09期
,本文編號(hào):2013814
本文鏈接:http://sikaile.net/kejilunwen/huagong/2013814.html
最近更新
教材專(zhuān)著