天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 化工論文 >

鉀礦石用于磷爐造渣助熔機(jī)理研究

發(fā)布時間:2018-06-03 15:55

  本文選題:助熔劑 + 鉀礦石; 參考:《昆明理工大學(xué)》2017年碩士論文


【摘要】:黃磷是眾多行業(yè)的基礎(chǔ)原料,其生產(chǎn)過程由電提供熱量,用碳還原磷礦石獲得單質(zhì)磷,再經(jīng)洗滌、精制生產(chǎn)黃磷,采用硅石作助熔劑以降低爐渣排渣溫度。通常情況下,電爐操作溫度在1350~1450℃之間,噸產(chǎn)品磷電耗在13000~15000kW·h,因電爐容量、操作水平及原料品質(zhì)而異,因此,黃磷生產(chǎn)是高能耗限制產(chǎn)業(yè);我國可溶性鉀資源短缺,而以鉀長石為代表的難溶性鉀資源豐富,作為農(nóng)業(yè)生產(chǎn)大國,鉀肥是必不可少的。本文在電爐法生產(chǎn)黃磷原理的基礎(chǔ)上,提出用鉀礦石替換硅石作為磷爐造渣助熔劑,利用其可形成更低共熔物的特點,在降低黃磷生產(chǎn)能耗的同時,回收隨尾氣升華的氧化鉀制備鉀肥,緩解了鉀肥的短缺,為綜合利用電爐法黃磷和鉀礦石開辟一條新的途徑。為便于研究含鉀礦石替換硅石助熔效果,在充分認(rèn)識電爐法黃磷生產(chǎn)熔渣形成機(jī)理的基礎(chǔ)上,實驗用CaO代替磷礦石,將助劑化學(xué)純SiO2、硅石、鉀長石和霞石正長巖與CaO在不同酸度值下混合均勻,測定其熔融溫度、粘度,對高溫下不同助熔劑磷爐造渣機(jī)理進(jìn)行了初步探討;為了驗證助熔劑替換的優(yōu)越性,將不同助熔劑與焦炭、磷礦石進(jìn)行高溫反應(yīng),測定其磷的轉(zhuǎn)化率、鉀的氣化率以及殘渣的高溫流動性。對CaO-硅石和CaO-鉀礦石體系的熱力學(xué)研究表明,鉀礦石可以降低磷爐造渣助熔的反應(yīng)溫度。通過不同助熔劑體系下的熔融性研究可知:與傳統(tǒng)的硅石助熔相比,化學(xué)純SiO2助熔的熔點升高49.5℃,鉀長石助熔的熔點降低73.5℃,霞石正長巖降低257.2℃。在相同反應(yīng)溫度和時間下,通過高溫體系攤開面積對不同助熔體系的爐渣流動度進(jìn)行研究,結(jié)果表明:SiO2體系推開面積是硅石的0.49倍,鉀長石體系是硅石助熔體系的1.54倍,霞石正長巖-CaO體系是硅石-CaO體系的7.49倍。結(jié)合XRD和TG-DSC分析表征可知,SiO2-CaO、硅石-CaO和鉀長石-CaO體系在900℃時已有CaSiO3和Ca2SiO4生成,SiO2-CaO體系在1300℃硅酸鈣鹽的衍射峰強(qiáng)度較強(qiáng),而硅石-CaO體系在1300℃已有少量玻璃體形成,衍射圖譜特征峰以CaSiO3為主,鉀長石-CaO體系在1000℃有CaAl2Si2O8和Ca2Al2SiO7生成,在1300℃時殘余硅酸鈣鹽和硅鋁酸鈣鹽熔融形成液態(tài),衍射峰以KAlSiO4為主,霞石正長巖-CaO體系在900℃時就有Ca2Al2SiO7和Ca12Al14O33形成,1200℃圖譜以KAlSi04為主,1250℃時體系由晶態(tài)變?yōu)榉蔷B(tài)。由此可知,鉀礦石可以降低黃磷生產(chǎn)的熔點,而鉀礦石中霞石正長巖助熔效果又優(yōu)于鉀長石。在上述研究的基礎(chǔ)上,對不同助熔劑-焦炭-磷礦石體系高溫反應(yīng)后磷的轉(zhuǎn)化率進(jìn)行研究,結(jié)果表明:在1300℃時硅石-磷礦石-焦炭體系磷的轉(zhuǎn)化率為30.85%,鉀長石助熔體系在1100℃和1300℃時分別為38.7%和89.62%,霞石正長巖體系在1100℃時為86.56%。對鉀礦石-焦炭-磷礦石體系鉀的氣化率的研究可知,由于K2O易升華,用鉀長石和霞石正長巖助熔磷爐造渣時,在1100℃鉀的氣化率分別為81.57%和98.57%。對不同助熔劑-焦炭-磷礦石體系反應(yīng)殘渣流動溫度的測定結(jié)果表明:鉀長石助熔時在1300℃下殘渣流動溫度為1405℃,而霞石正長石在1100℃時反應(yīng)殘渣的流動溫度為1401.7℃。對殘渣進(jìn)行XRD表征,1300℃時,SiO2助熔體系仍以Ca5(PO4)3F和SiO2特征峰為主,硅石體系有少量硅酸鈣鹽生成,鉀長石體系有少量玻璃體生成,霞石正長巖體系由晶態(tài)轉(zhuǎn)為非晶態(tài)。故用鉀礦石替換硅石生產(chǎn)黃磷可以提高磷的轉(zhuǎn)化率,降低反應(yīng)溫度,同時聯(lián)產(chǎn)鉀肥。
[Abstract]:Yellow phosphorus is the basic raw material in many industries, its production process is supplied by electricity, the phosphate rock is reduced by carbon to obtain phosphorus, and then by washing, refining production of yellow phosphorus and using silica as a flux to reduce slag discharge temperature. In general, the operating temperature of the electric furnace is between 1350~1450 and 13000 to 15000kW. H. Capacity, operation level and raw material quality are different. Therefore, the production of yellow phosphorus is a high energy consumption restriction industry. The soluble potassium resources in China are short and the potassium feldspar as the representative of the difficult soluble potassium resources is rich. As a big agricultural production country, potash fertilizer is essential. In this paper, on the basis of the principle of producing yellow phosphorus in the electric furnace method, the replacement of silica with potassium ores is proposed. As a phosphorus furnace slag flux, it can make use of the characteristics of the lower eutectic, while reducing the energy consumption of the yellow phosphorus production, recovering potassium oxide from the sublimation of the tail gas, alleviating the shortage of potassium fertilizer, opening up a new way for the comprehensive utilization of the yellow phosphorus and potassium ores in the electric furnace method. On the basis of fully understanding the formation mechanism of the slag in the production of yellow phosphorus in the electric furnace, the experiment used CaO to replace the phosphorus ore. The chemical pure SiO2, silica, potassium feldspar and nepheline syenite and CaO were mixed uniformly under different acidity values, and the melting temperature and viscosity were measured, and the mechanism of the slag formation of different flux in the high temperature was preliminarily discussed. The superiority of the substitution of fluxing agent, the reaction of different flux with coke and phosphate rock at high temperature, the conversion rate of phosphorus, the gasification rate of potassium and the high temperature fluidity of the residue. The thermodynamic study on the system of CaO- silica and CaO- potassium ore shows that the potassium ore can reduce the reaction temperature of the smelting of the phosphorus furnace and through the different flux body. Compared with the traditional silica fusion, the melting point of the chemical pure SiO2 fusion is increased by 49.5 degrees C, the melting point of the potash feldspar is reduced by 73.5, and the nepheline syenite is reduced by 257.2 degrees C. The results of the slag flow degree of the different melting system are studied by the open area of the high temperature system at the same reaction temperature and time. The area of SiO2 system is 0.49 times as high as silica, 1.54 times as high as silica, and 7.49 times of nepheline syenite -CaO system. SiO2-CaO, silica -CaO and potassium feldspar -CaO system has been formed at CaSiO3 and Ca2SiO4 at 900, and SiO2-CaO system is at 1300 centigrade of silicic acid. The diffraction peak intensity of calcium salt is strong, while the silica -CaO system has a small number of vitreous body formation at 1300 C, the characteristic peak of the diffraction pattern is CaSiO3, the -CaO system of potassium feldspar has CaAl2Si2O8 and Ca2Al2SiO7 at 1000, and the residual calcium silicate salt and calcium aluminosilicate salt melt into liquid at 1300 C, the diffraction peak is KAlSiO4 mainly, nepheline syenite -Ca The O system has Ca2Al2SiO7 and Ca12Al14O33 at 900 C. The 1200 c map is dominated by KAlSi04, and the system changes from crystal to amorphous state at 1250 C. Thus, potassium ores can reduce the melting point of yellow phosphorus production, and the effect of nepheline syenite in the potassium ore is better than that of potassium feldspar. The conversion rate of phosphorus after high temperature reaction was studied. The results showed that the conversion rate of phosphorus in the silica phosphate rock coke system was 30.85% at 1300 and 38.7% and 89.62% at 1100 and 1300, respectively, and the nepheline syenite system was gasified by 86.56%. for potassium ore coke phosphate rock system at 1100 C. The results of the study show that the flow temperature of K2O Yi Shenghua, with potassium feldspar and nepheline syenite phosphate smelting furnace, was 81.57% and 98.57%., respectively, at 1100 C and 98.57%., respectively, to determine the flow temperature of the reaction residue of the different flux coke phosphate rock system, indicating that the flow temperature of the residue at 1300 C was 1405, while that of the potassium feldspar at 1300. At 1100 C, the flow temperature of the reacting residue is 1401.7. The residue is characterized by XRD. At 1300, the SiO2 fusion system is still dominated by Ca5 (PO4) 3F and SiO2 characteristic peaks, a small amount of calcium silicate in the silica system, a small amount of vitreous formation in the potassium feldspar system and the crystallization of the nepheline syenite system from crystalline to amorphous. The production of yellow phosphorus by silica can increase the conversion rate of phosphorus, reduce the reaction temperature, and simultaneously produce potassium fertilizer.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TQ126.317

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 Md Mamunur RASHID;Mahbuba JAHAN;Khandakar Shariful ISLAM;;Impact of Nitrogen, Phosphorus and Potassium on Brown Planthopper and Tolerance of Its Host Rice Plants[J];Rice Science;2016年03期

2 袁博;李春;梁斌;呂莉;岳海榮;繩昊一;葉龍潑;謝和平;;鉀長石-氯化鈣焙燒提鉀過程研究(英文)[J];Chinese Journal of Chemical Engineering;2015年09期

3 王大川;梁欽鋒;龔欣;劉海峰;劉霞;;添加助熔劑后朱集西煤灰熔融特性規(guī)律研究[J];燃料化學(xué)學(xué)報;2015年02期

4 張景;陳洪博;張宇宏;;添加助熔劑降低晉城煤高灰熔融性溫度研究[J];煤質(zhì)技術(shù);2015年01期

5 曹立峰;連文莉;于亞輝;;霧化氣流量對ICP-AES測定鉀長石中鉀、鈉、鈣、鎂、鋁、鐵和鈦的影響[J];冶金分析;2014年11期

6 張瓊;李國斌;蘇毅;楊逢時;;黃磷爐渣制備聚硅酸鋁絮凝劑的實驗研究[J];非金屬礦;2014年05期

7 殷憲國;;我國窯法磷酸工業(yè)化技術(shù)進(jìn)展[J];磷肥與復(fù)肥;2014年05期

8 Li-li YANG;Hong-ming WANG;Xiang ZHU;Gui-rong LI;;Effect of Boron Mud and CaF_2 on Surface Tension and Density of CaO-SiO_2-B_2O_3 Ternary Slag Systems[J];Journal of Iron and Steel Research(International);2014年08期

9 何海;;精料入爐對黃磷電爐節(jié)能降耗的重要意義[J];山東化工;2014年07期

10 孟昊;陸思偉;;電爐法生產(chǎn)黃磷安全風(fēng)險分析與防范[J];無機(jī)鹽工業(yè);2014年06期

相關(guān)碩士學(xué)位論文 前4條

1 李茜;熔融法還原中低品位磷礦的工藝及動力學(xué)研究[D];武漢工程大學(xué);2013年

2 任雪嬌;石膏、鉀長石熱反應(yīng)基礎(chǔ)研究[D];昆明理工大學(xué);2013年

3 丁楠;利用磷礦石、鉀長石同步提取磷和鉀的基礎(chǔ)研究[D];昆明理工大學(xué);2010年

4 張桂齋;低溫分解鉀長石熱力學(xué)及動力學(xué)研究[D];山東科技大學(xué);2005年



本文編號:1973347

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huagong/1973347.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶36f05***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com