天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 化工論文 >

導(dǎo)電聚合物和Pt納米顆粒所形成的復(fù)合電極電催化氧化甲醇行為的研究

發(fā)布時(shí)間:2018-05-29 10:42

  本文選題:甲醇氧化 + Pt納米顆粒; 參考:《華東師范大學(xué)》2015年碩士論文


【摘要】:近幾十年來,由于科技的迅猛發(fā)展,對(duì)能量的需求日益增加,化石燃料的迅速減少以及環(huán)境污染的日益加重,使得探尋一種能量轉(zhuǎn)換率高,低或零排放量的燃料電池,已經(jīng)逐漸成為人們目前研究的熱點(diǎn)。氫氣燃料電池作為一種高能燃料電池,除了需考慮它的經(jīng)濟(jì)成本、可靠性和耐久性外,目前還需面臨氫氣的生產(chǎn)、儲(chǔ)存和運(yùn)輸?shù)葐栴},而直接甲醇燃料電池(DMFCs)是以可再生的液體甲醇作為燃料,與氫氣燃料電池相比具有原料便于儲(chǔ)存、運(yùn)輸、安全和電池裝置簡(jiǎn)單等優(yōu)勢(shì)。目前,在酸性條件下,DMFC中對(duì)甲醇的電催化氧化具有最好電催化活性的催化劑是Pt及其合金,但Pt是一種貴金屬催化劑且其電催化氧化甲醇的效率與許多因素有關(guān),其中負(fù)載Pt納米顆粒的電極材料的種類及其表面狀況對(duì)提高Pt納米顆粒電催化氧化甲醇的效率就具有非常重要的影響;同時(shí),在DMFC中,甲醇的電極氧化是一個(gè)極其復(fù)雜且緩慢的過程,將會(huì)產(chǎn)生許多諸如CO和CHO等易吸附在電極表面的中間體而降低電極的電催化活性。因此,探尋一種具有較大比表面積的Pt底電極材料,用以減小Pt納米顆粒的負(fù)載量,增加其分散度,提高其電催化氧化甲醇的效率和抗中毒能力已經(jīng)成為目前的研究熱點(diǎn)。本論文分別選取了將聚苯胺(PANI)、聚鄰甲基苯胺(POT)、聚鄰甲氧基苯胺(POMA)、多壁碳納米管(MWCNT)和分別摻雜有不同含量的多壁碳納米管(MWCNT),石墨烯(GRA),電池活性碳(YBC)和電容活性碳(YEC)的石墨粉碳糊材料作為負(fù)載Pt納米顆粒的底電極,主要嘗試著從以下四個(gè)方面探究了負(fù)載Pt納米顆粒的底電極種類及其制備條件對(duì)其所負(fù)載的Pt納米顆粒電催化氧化甲醇活性的影響。(1)比較Pt/PANI/GC(玻碳電極)、Pt/POT/GC 和 Pt/POMA/GC電催化氧化甲醇的活性利用循環(huán)伏安法、在線紫外-可見光譜和交流阻抗等技術(shù)比較性地探究了具有不同膜厚度的PANI、POT和POMA膜結(jié)構(gòu)的差異性和導(dǎo)電性。通過恒電位電沉積法分別成功地制備出了具有不同膜厚度的PANI、POT和POMA修飾的Pt/PANI/GC、Pt/POT/GC和Pt/POMA/GC復(fù)合電極。利用SEM表征了這些復(fù)合電極上Pt納米顆粒的形貌,利用循環(huán)伏安法測(cè)試了這些復(fù)合電極的電化學(xué)活性比表面積(EASA)以及這些復(fù)合電極電催化氧化甲醇的活性大小。研究發(fā)現(xiàn)具有不同膜厚度的Pt/PANI/GC、Pt/POT/GC 和 Pt/POMA/GC上的Pt納米顆粒分別呈現(xiàn)出不同的形貌,這三種復(fù)合電極電催化氧化甲醇的活性均先隨著各相應(yīng)聚合物膜厚度的增大而增大,當(dāng)聚合物膜厚度超過一定值之后,又隨著聚合物膜厚度的增加而逐漸減小,除Pt/POMA/GC外,Pt/POT/GC和Pt/PANI/G C電催化氧化甲醇的活性大小隨其各自膜厚度的變化趨勢(shì)剛好和這兩復(fù)合電極上各自EASA隨其各自膜厚度變化的趨勢(shì)相同,其中Pt/POT/GC對(duì)甲醇的電催化氧化具有最好的電催化活性,其次分別為Pt/PANI/GC 和 Pt/POMA/GC.(2) Pt/POT/GC的制備條件對(duì)其電催化氧化甲醇活性的影響利用循環(huán)伏安法詳細(xì)探究POT膜的不同制備方法(循環(huán)伏安和恒電位法)、膜的電沉積電位、膜厚度以及Pt納米顆粒在這些POT膜上的不同電沉積電位對(duì)Pt/POT/GC復(fù)合電極電催化氧化甲醇活性的影響。研究發(fā)現(xiàn)POT的膜結(jié)構(gòu)和電化學(xué)活性均隨著其制備條件的變化而變,Pt納米顆粒在POT/GC上的電沉積行為也受其電沉積電位的影響,而這些因素都將會(huì)影響Pt/POT/GC復(fù)合電極電催化氧化甲醇的電化學(xué)活性。實(shí)驗(yàn)結(jié)果表明,當(dāng)Pt的電沉積電位為-100mV, POT的膜沉積電量為4.5mC時(shí)(0.85V恒電位制備條件下), Pt/POT(4.5mC)/GC復(fù)合電極對(duì)甲醇的電催化氧化活性最高。(3) Pt 在 POT/MWCNT/GC上的電沉積行為及其電催化氧化甲醇的活性通過恒電位電沉積法成功地制備出了Pt/POT/MWCNT/GC復(fù)合電極,并采用SEM表征了復(fù)合電極上Pt納米顆粒的形貌,采用循環(huán)伏安法和恒電位法探究了POT的膜結(jié)構(gòu)特點(diǎn)以及膜厚度對(duì)Pt/POT/MWCNT/GC復(fù)合電極電催化氧化甲醇活性的影響以及甲醇在這種復(fù)合電極上的氧化動(dòng)力學(xué)的過程。由于MWCNT的存在,增大了POT電沉積時(shí)的電極表面積,所以與純GC電極相比,POT在MWCNT/GC上的聚合速度明顯的較純GC電極上的快,且其電化學(xué)活性也明顯的較純GC電極上的高。Pt納米顆粒在具有不同膜厚度的POT/MWCNT/GC 上具有不同的電沉積行為,它能影響Pt納米顆粒在這些復(fù)合底電極上的電沉積形貌、顆粒大小和分散度,進(jìn)而能影響其電催化氧化甲醇的電催化活性,其中當(dāng)POT的膜沉積電量為1.0mC, Pt/POT(1.0mC)/MWCNT/GC電催化氧化甲醇的活性最好。甲醇氧化的動(dòng)力學(xué)研究表明,低掃速下(10~100m Vs-1),甲醇在Pt/POT/MWCNT/GC上的氧化動(dòng)力學(xué)過程由甲醇的擴(kuò)散所控制,而高掃速下(200-1200mVs-1),甲醇在Pt/POT/MWCNT/GC上的氧化動(dòng)力學(xué)過程由甲醇的擴(kuò)散和吸附共同作用。(4)Pt與各種碳摻雜的石墨碳糊所行成的復(fù)合電極電催化氧化甲醇的活性首先,以石墨粉和液態(tài)石蠟油為主要原料,成功地制備出了穩(wěn)定的純碳糊底電極(CPE)和分別摻雜有不同含量的多壁碳納米管(MWCNT)、石墨烯(GRA)、電池活性碳(YBC)和電容活性碳(YEC)的摻雜型碳糊底電極Y+CPE(其中Y指上述各摻雜碳材料)以及有不同膜厚度的POT膜修飾的POT/CPE和POT/YBC(14%)+CPE(YBC摻雜的質(zhì)量分?jǐn)?shù)為14%)碳糊底電極,在整個(gè)碳糊底電極的制備過程中,保持石墨粉混合物的總質(zhì)量為0.5g,石蠟油的質(zhì)量為0.325g不變。然后再通過恒電位電解的方法將Pt納米顆粒電沉積在上述所形成的各種碳糊底電極上,制備出各種相應(yīng)的Pt/Y+CPE, Pt/POT/CPE和 Pt/POT/YBC(14%)+CPE復(fù)合電極,并通過SEM表征了這些復(fù)合電極上Pt納米顆粒的形貌,循環(huán)伏安法測(cè)試了這些復(fù)合電極的EASA和這些復(fù)合電極電催化氧化甲醇的活性。研究表明,當(dāng)POT的膜沉積電量為6.5mC, YBC的摻雜質(zhì)量百分?jǐn)?shù)為14%時(shí),所得的Pt/POT/YBC(14%)+CPE電極對(duì)甲醇具有較好的電催化活性。
[Abstract]:In recent decades, due to the rapid development of science and technology, the increasing demand for energy, the rapid reduction of fossil fuels and the increasing pollution of the environment, the exploration of a fuel cell with high energy conversion rate, low or zero discharge volume has gradually become a hot spot of research. Hydrogen fuel cell is a high-energy fuel electric power. In addition to considering its economic cost, reliability and durability, the pool needs to face the problems of hydrogen production, storage and transportation, while the direct methanol fuel cell (DMFCs) is a renewable liquid methanol as fuel. Compared with the hydrogen fuel cell, it has the advantages of easy storage, transportation, safety and simple battery devices. In the acid condition, Pt and its alloy have the best electrocatalytic activity for electrocatalytic oxidation of methanol in DMFC, but Pt is a kind of noble metal catalyst and the efficiency of electrocatalytic oxidation of methanol is related to many factors. The type of electrode materials loaded with Pt nanoparticles and the surface condition of the catalysts are used to improve the electricity of Pt nanoparticles. The efficiency of catalytic oxidation of methanol has a very important effect. At the same time, in DMFC, the electrode oxidation of methanol is a very complicated and slow process, which will produce a lot of intermediates, such as CO and CHO, which are easily adsorbed on the surface of the electrode and reduce the electrocatalytic activity of the electrode. For this reason, a kind of Pt bottom electricity with a larger specific surface area is explored. Polar materials are used to reduce the load of Pt nanoparticles, increase their dispersion, improve the efficiency of electrocatalytic oxidation of methanol and the ability to resist poisoning. In this paper, polyaniline (PANI), poly o-methylaniline (POT), polyo-methoxy aniline (POMA) and multi walled carbon nanotubes (MWCNT) were selected respectively. Graphite powder carbon paste materials with different content of multi wall carbon nanotubes (MWCNT), graphene (GRA), battery active carbon (YBC) and capacitive active carbon (YEC) are used as the bottom electrodes for loading Pt nanoparticles. The main purpose of this study is to explore the type of the bottom electrode of the loaded Pt nanoparticles and the Pt nanoparticles loaded by the preparation conditions from the following four aspects. The effects of catalytic oxidation of methanol. (1) compared Pt/PANI/GC (glassy carbon electrode), Pt/POT/GC and Pt/POMA/GC electrocatalytic oxidation of methanol by cyclic voltammetry, on-line UV visible spectroscopy and AC impedance techniques, the differences and conductivity of PANI, POT and POMA membrane structures with different film thickness were compared. PANI, POT and POMA modified Pt/PANI/GC, Pt/POT/GC and Pt/POMA/GC composite electrodes with different film thickness were successfully prepared by electrodeposition. The morphology of Pt nanoparticles on these composite electrodes was characterized by SEM, and the electrochemical activity specific surface area (EASA) of these composite electrodes and these complex electrodes were measured by cyclic voltammetry. It is found that the Pt nanoparticles with different thickness of Pt/PANI/GC, Pt/POT/GC and Pt/POMA/GC exhibit different morphology respectively. The activity of electrocatalytic oxidation of methanol at the three composite electrodes first increases with the increase of the thickness of the corresponding polymer films, when the thickness of the polymer film is the thickness of the polymer membrane. After more than a certain value, with the increase of the thickness of the polymer film, in addition to the Pt/POMA/GC, the Pt/POT/GC and Pt/PANI/G C electrocatalytic oxidation of methanol has the same tendency to change with the thickness of their respective membrane, and the same trend of the change of the thickness of each membrane on the two composite electrode with their respective film thickness, of which Pt/POT/GC has the electricity of methanol. Catalytic oxidation has the best electrocatalytic activity, followed by the effects of the preparation conditions of Pt/PANI/GC and Pt/POMA/GC. (2) Pt/POT/GC on the activity of electrocatalytic oxidation of methanol, using cyclic voltammetry to explore the different preparation methods of POT films (cyclic voltammetry and constant potential method), the electrodeposition potential of the membrane, the thickness of the membrane and the Pt nanoparticles. The effect of different electrodeposition potentials on these POT films on the electrocatalytic oxidation of methanol by Pt/POT/GC composite electrode has been studied. It is found that the membrane structure and electrochemical activity of POT change with the change of the preparation conditions. The electrodeposition behavior of Pt nanoparticles on POT/GC is also influenced by the electrodeposition potential, and these factors will affect Pt/POT. The electrochemical activity of methanol was oxidized by /GC composite electrode. The experimental results showed that the electrocatalytic oxidation activity of Pt/POT (4.5mC) /GC composite electrode to methanol was the highest when the electrodeposition potential of Pt was -100mV and the deposition of POT was 4.5mC (0.85V constant potential). (3) the electrodeposition behavior of Pt in POT/MWCNT/GC and its electrical activity The Pt/POT/MWCNT/GC composite electrode was successfully prepared by constant potential electrodeposition, and the morphology of Pt nanoparticles on the composite electrode was characterized by SEM. The membrane structure characteristics of POT and the electrocatalytic oxidation of methanol to Pt/POT/ MWCNT/GC composite electrode were investigated by cyclic voltammetry and constant potential method. The effect of the oxidation kinetics of methanol on this composite electrode. Because of the presence of MWCNT, the electrode surface area of POT electrodeposition is increased, so compared with the pure GC electrode, the polymerization speed of POT on MWCNT/GC is obviously faster than that on the pure GC electrode, and its electrochemical activity is obviously higher than the high.Pt nanoscale on the pure GC electrode. The particles have different electrodeposition behavior on POT/MWCNT/GC with different film thickness. It can affect the electrodeposition morphology, particle size and dispersion of Pt nanoparticles on these composite bottom electrodes, which can affect the electrocatalytic activity of the electrocatalytic oxidation of methanol, when the deposition of POT is 1.0mC, Pt/POT (1.0mC) /MWCNT/GC electricity. Catalytic oxidation of methanol is the best activity. The kinetic study of methanol oxidation shows that the oxidation kinetics of methanol on Pt/POT/MWCNT/GC under low sweep rate (10 ~ 100m Vs-1) is controlled by the diffusion of methanol, while high sweep speed (200-1200mVs-1), the oxidation kinetics of methanol on Pt/POT/MWCNT/GC is made by the diffusion and adsorption of methanol together. (4) the activity of Pt and various carbon doped graphite carbon paste by electrocatalytic oxidation of methanol is first made by graphite powder and liquid paraffin oil as the main material. A stable pure carbon paste bottom electrode (CPE) and different content of multi walled carbon nanotubes (MWCNT), graphene (GRA) and battery active carbon (YBC) are successfully prepared. The YEC doped carbon paste bottom electrode Y+CPE (of which Y refers to the above doped carbon materials) and the POT/CPE and POT/YBC (14%) +CPE (YBC doped mass fraction of 14%) modified by POT films with different film thickness, and in the preparation of the whole carbon paste bottom electrode, the total mass of the graphite powder mixture is 0.5g, paraffin wax is maintained. The quality of the oil is 0.325g unchanged. Then the Pt nanoparticles are electrodeposited by electroconstant electrolysis on various carbon paste bottom electrodes formed above, and a variety of corresponding Pt/Y+CPE, Pt/POT/CPE and Pt/POT/YBC (14%) +CPE composite electrodes are prepared. The morphology of Pt nanoparticles on these composite electrodes is characterized by SEM and cyclic voltammetry is characterized by SEM. The results show that the Pt/POT/YBC (14%) +CPE electrode obtained by the EASA (14%) +CPE electrode has good electrocatalytic activity for methanol when the electrokinetic energy of these composite electrodes and the activity of electrocatalytic oxidation of methanol have been tested. The results show that the Pt/POT/YBC (14%) +CPE electrode obtained from the deposition of 6.5mC and the percentage of the doping mass of the YBC is 14%.
【學(xué)位授予單位】:華東師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:O646.54;TM911.4

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 張玉梅;劉梅;張偉;李海波;;Pt原子百分含量對(duì)FePt合金薄膜結(jié)構(gòu)的影響[J];吉林師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年01期

2 黃昆,陳景;Pt族金屬在加壓氰化浸出過程中的行為探討[J];金屬學(xué)報(bào);2004年03期

3 馬現(xiàn)剛;徐恒泳;李文釗;;Pt/γ-Al_2O_3催化劑催化微晶纖維素轉(zhuǎn)化[J];石油化工;2008年05期

4 楊宗獻(xiàn);于小虎;馬東偉;;氧原子在具有Pt皮膚的Pt_3Ni(111)表面的吸附和擴(kuò)散(英文)[J];物理化學(xué)學(xué)報(bào);2009年11期

5 孫盾;何建平;周建華;王濤;狄志勇;丁曉春;;電化學(xué)置換法制備高Pt利用率的類核殼型Ni-Pt電催化劑(英文)[J];物理化學(xué)學(xué)報(bào);2010年05期

6 刁兆玉,董晨初,王澤新,韓玲利,郝策;氧原子在Pt(s)-[n(111)×(100)]型臺(tái)階面上的吸附和振動(dòng)[J];物理化學(xué)學(xué)報(bào);2004年12期

7 錢亦萍;劉為;趙帥;強(qiáng)西懷;;PT有機(jī)膦鹽鞣劑鞣性及其應(yīng)用工藝的研究[J];中國(guó)皮革;2006年19期

8 李曉林;毛雪瑛;;大氣氣溶膠中痕量貴金屬元素Pt的儀器中子活化分析初步研究[J];核技術(shù);2007年04期

9 杜建周;裘進(jìn)浩;朱孔軍;羅俊;季宏麗;;含Pt金屬芯壓電陶瓷纖維的微觀結(jié)構(gòu)和電學(xué)性能[J];硅酸鹽學(xué)報(bào);2012年06期

10 鄭秋容,沈培康,何丹若;甲酸在Pt旋轉(zhuǎn)圓盤電極上的氧化機(jī)理[J];無錫輕工大學(xué)學(xué)報(bào);1999年01期

相關(guān)會(huì)議論文 前10條

1 林建強(qiáng);;PT新實(shí)踐——水中運(yùn)動(dòng)療法[A];2013浙江省物理醫(yī)學(xué)與康復(fù)學(xué)學(xué)術(shù)年會(huì)暨第八屆浙江省康復(fù)醫(yī)學(xué)發(fā)展論壇論文集[C];2013年

2 杜鵑;巢亞軍;原鮮霞;章冬云;馬紫峰;;直接甲醇燃料電池Pt/炭氣凝膠電催化劑的合成、表征和性能[A];第十三次全國(guó)電化學(xué)會(huì)議論文摘要集(上集)[C];2005年

3 婁玉行;魏春景;;西大別紅安藍(lán)閃石榴輝巖變質(zhì)條件及PT軌跡初探[A];2006年全國(guó)巖石學(xué)與地球動(dòng)力學(xué)研討會(huì)論文摘要集[C];2006年

4 黃仙明;;220kV母線PT二次空開跳閘原因分析及防范措施[A];全國(guó)火電大機(jī)組(300MW級(jí))競(jìng)賽第38屆年會(huì)論文集[C];2009年

5 孫詩(shī);牟鑫;劉叔娟;趙強(qiáng);黃維;;重金屬Pt(Ⅱ)配合物激發(fā)態(tài)性質(zhì)的理論研究[A];全國(guó)第八屆有機(jī)固體電子過程暨華人有機(jī)光電功能材料學(xué)術(shù)討論會(huì)摘要集[C];2010年

6 孫振宇;趙燕飛;張宏曄;劉志敏;;超聲法制備Pt/碳納米管高效納米催化材料研究[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第01分會(huì)場(chǎng)摘要集[C];2010年

7 劉軍;楊毅夫;邵惠霞;陳衛(wèi)華;熊躍;高峰;;一種新型Pt/碳纖維超微盤電極的制備[A];第十三次全國(guó)電化學(xué)會(huì)議論文摘要集(上集)[C];2005年

8 溫國(guó)棟;徐云鵬;馬懷軍;楊曉梅;曲偉;徐竹生;田志堅(jiān);;Pt/C催化劑催化生物質(zhì)及其衍生物水相重整制氫[A];第十三屆全國(guó)催化學(xué)術(shù)會(huì)議論文集[C];2006年

9 駱鵬;衛(wèi)辰;段磊;朱濤;侯啟明;;用于組分疫苗生產(chǎn)的百日咳PT基因工程菌的鑒定[A];2013年中國(guó)藥學(xué)大會(huì)暨第十三屆中國(guó)藥師周論文集[C];2013年

10 歐陽(yáng)明鑒;;大中型水輪發(fā)電機(jī)出口回路PT選型的探討[A];2013年電氣學(xué)術(shù)交流會(huì)議論文集[C];2013年

相關(guān)重要報(bào)紙文章 前10條

1 記者 盛義 實(shí)習(xí)記者 王平;廣東福地重組PT紅光[N];中國(guó)證券報(bào);2000年

2 記者 李蔚;PT紅光剝離債務(wù)2.5億元[N];中國(guó)證券報(bào);2001年

3 記者 吳銘;PT凱地資產(chǎn)重組前期工作就緒[N];中國(guó)證券報(bào);2001年

4 萬寧;PT瓊?cè)A僑 但求金山住神仙[N];中國(guó)證券報(bào);2002年

5 記者 姚備;PT雙鹿公布股東會(huì)法律意見[N];中國(guó)證券報(bào);2000年

6 記者 周松林;PT農(nóng)商社退回母公司“優(yōu)質(zhì)資產(chǎn)”[N];中國(guó)證券報(bào);2000年

7 記者 義敏;PT紅光資產(chǎn)置換重塑主業(yè)[N];中國(guó)證券報(bào);2001年

8 記者 何凌楓;PT農(nóng)商社大股東將施援手[N];中國(guó)證券報(bào);2001年

9 記者 陳賦斌;三家PT公司披露重組進(jìn)展[N];中國(guó)證券報(bào);2001年

10 翁;PT紅光凈資產(chǎn)仍為負(fù)值[N];中國(guó)證券報(bào);2001年

相關(guān)博士學(xué)位論文 前4條

1 郭志華;關(guān)于量子關(guān)聯(lián)性與PT-對(duì)稱量子理論的研究[D];陜西師范大學(xué);2013年

2 陳衛(wèi);不同聚集態(tài)Pt納米粒子的合成、表面組裝及其電化學(xué)和特殊紅外性能研究[D];廈門大學(xué);2003年

3 白福全;過渡金屬配合物激發(fā)態(tài)和光譜性質(zhì)的量子理論研究:Pt配合物[D];吉林大學(xué);2009年

4 李軍;丙烷脫氫用Pt納米催化劑的制備、表征及其催化性能研究[D];中國(guó)海洋大學(xué);2014年

相關(guān)碩士學(xué)位論文 前10條

1 周小金;直接甲醇燃料電池陽(yáng)極Pt基催化劑的研究[D];上海電力學(xué)院;2010年

2 李荃;上市公司法人治理結(jié)構(gòu)研究——從“PT網(wǎng)點(diǎn)”說起[D];華東政法學(xué)院;2002年

3 張海艷;質(zhì)子交換膜燃料電池用Pt基催化劑的制備與性能研究[D];華東理工大學(xué);2012年

4 林逍;用于染料敏化太陽(yáng)能電池的非Pt催化材料研究[D];大連理工大學(xué);2012年

5 段媛媛;關(guān)于PT-奇框架的若干研究[D];陜西師范大學(xué);2014年

6 劉曉華;關(guān)于PT-對(duì)稱量子理論的一些研究[D];陜西師范大學(xué);2014年

7 劉慧;二甲醚在Pt低指數(shù)晶面吸附的密度泛函研究[D];哈爾濱工業(yè)大學(xué);2008年

8 何素貞;納米結(jié)構(gòu)Pt金屬表面異常紅外效應(yīng)的理論研究[D];廈門大學(xué);2006年

9 汪淑影;反相微乳液法制備Pt基催化劑及加氫性能研究[D];東北石油大學(xué);2011年

10 王亞;負(fù)載型Pt、Cu催化劑上異辛烷中有機(jī)硫化物的空氣氧氧化脫除的研究[D];華東師范大學(xué);2008年



本文編號(hào):1950582

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huagong/1950582.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶88093***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com