二氧化鈦納米管的制備改性及其光催化性能研究
本文選題:TiO_2納米管 + Cu摻雜。 參考:《哈爾濱工業(yè)大學(xué)》2017年碩士論文
【摘要】:二氧化鈦(TiO_2)以其物理化學(xué)性質(zhì)穩(wěn)定,低成本,無(wú)毒性,同時(shí)其還具有較高的光催化活性和良好的光電化學(xué)性能,是一種被廣泛關(guān)注的半導(dǎo)體材料。然而,由于TiO_2自身較寬的禁帶寬度(3.2 eV),限制其在可見光范圍的響應(yīng)。于是有必要對(duì)TiO_2納米管進(jìn)行摻雜與改性,以期提高其在可見光范圍的響應(yīng),增加對(duì)太陽(yáng)光的利用率。本文采用電化學(xué)陽(yáng)極氧化制備高度有序TiO_2納米管,研究了陽(yáng)極氧化CuTi合金,一步制備Cu-Ti-O納米管,實(shí)現(xiàn)Cu的摻雜;通過直流反應(yīng)磁控濺射沉積Cu_2O在TiO_2納米管上,制備Cu_2O-TiO_2納米管,進(jìn)行窄禁帶半導(dǎo)體修飾改性。甲基橙(MO)是一種常見的染料,其水溶液的脫色效果可以用來(lái)衡量光催化降解率,本文對(duì)比研究了上述兩種改性TiO_2納米管的光催化性能。采用陽(yáng)極氧化的方法制備高度有序的TiO_2納米管陣列薄膜,研究了不同工藝參數(shù)對(duì)其形貌的影響。主要采用的表征手段是掃描電子顯微鏡(SEM),探究了環(huán)境溫度,電壓,陽(yáng)極氧化時(shí)間和有機(jī)酸添加劑對(duì)其形貌的影響,并從機(jī)理上進(jìn)行了解釋說明。從而,通過調(diào)節(jié)制備過程工藝參數(shù),可以對(duì)TiO_2納米管的微觀結(jié)構(gòu)和尺寸進(jìn)行調(diào)控。通過陽(yáng)極氧化CuTi合金,制備了Cu-Ti-O納米管,實(shí)現(xiàn)了Cu摻雜TiO_2納米管。利用X射線衍射儀(XRD)、X射線光電子能譜(XPS)、紫外可見分光光度計(jì)等手段對(duì)Cu-Ti-O納米管進(jìn)行了表征。通過高壓汞燈提供紫外輻照,光催化降解甲基橙溶液,以其降解速率來(lái)表征光催化性能。結(jié)果表明,Cu-Ti-O的光學(xué)吸收帶邊可以擴(kuò)展至450 nm,光催化性能較純TiO_2卻沒有得到提升。采用直流反應(yīng)磁控濺射的方法,在TiO_2納米管表面沉積Cu_2O納米顆粒,制備出Cu_2O-TiO_2納米管。利用一系列手段對(duì)Cu_2O-TiO_2納米管進(jìn)行表征,得到了Cu_2O負(fù)載TiO_2納米管最佳工藝參數(shù),探究了其白光光催化性能。結(jié)果表明,最佳Cu_2O沉積條件:濺射功率76 W,濺射壓強(qiáng)1.0 Pa,濺射氣體比例22:1(Ar:O_2),沉積時(shí)間20 s。Cu_2O-TiO_2納米管的光學(xué)吸收帶邊可以擴(kuò)展至450 nm以上,在400-600 nm波段上的吸收顯著增強(qiáng)。白光輻照下,光催化降解甲基橙溶液,120 min內(nèi)降解率達(dá)到94.4%,性能提升了1.14倍(單一TiO_2納米管120 min內(nèi)降解率為44%)。
[Abstract]:Titanium dioxide (TiO2) is a widely concerned semiconductor material due to its stable physical and chemical properties, low cost, non-toxicity, high photocatalytic activity and good photochemical properties. However, due to the wide bandgap of TiO_2 itself, its response in the visible range is limited. Therefore, it is necessary to doping and modifying TiO_2 nanotubes in order to improve their response in visible light range and increase the utilization ratio of solar light. In this paper, highly ordered TiO_2 nanotubes were prepared by electrochemical anodic oxidation. The anodizing of CuTi alloy was studied, and the Cu doping was realized by one-step preparation of Cu-Ti-O nanotubes. Cu_2O-TiO_2 nanotubes were prepared by Cu_2O deposition on TiO_2 nanotubes by DC reactive magnetron sputtering. The narrow gap semiconductor modification was carried out. Methyl Orange (MOO) is a common dye, and its decolorization effect can be used to measure the photocatalytic degradation rate. The photocatalytic properties of the two modified TiO_2 nanotubes were studied in this paper. The highly ordered TiO_2 nanotube array films were prepared by anodic oxidation. The effects of different process parameters on the morphology of the films were investigated. The influence of ambient temperature, voltage, anodizing time and organic acid additive on the morphology of SEM was investigated by means of scanning electron microscope (SEM), and the mechanism was explained. Thus, the microstructure and size of TiO_2 nanotubes can be regulated by adjusting the process parameters. Cu-Ti-O nanotubes were prepared by anodic oxidation of CuTi alloy and Cu doped TiO_2 nanotubes were realized. Cu-Ti-O nanotubes were characterized by X-ray diffractometer X-ray photoelectron spectroscopy (XPS) and UV-Vis spectrophotometer. The photocatalytic degradation of methyl orange solution was carried out by UV irradiation with high pressure mercury lamp, and the photocatalytic activity was characterized by its degradation rate. The results show that the optical absorption band edge of Cu-Ti-O can be extended to 450nm, but the photocatalytic performance of Cu-Ti-O is not improved compared with pure TiO_2. Cu_2O nanoparticles were deposited on the surface of TiO_2 nanotubes by DC reactive magnetron sputtering and Cu_2O-TiO_2 nanotubes were prepared. Cu_2O-TiO_2 nanotubes were characterized by a series of methods, and the optimum technological parameters of Cu_2O loaded TiO_2 nanotubes were obtained, and their white photocatalytic properties were investigated. The results show that the optimal Cu_2O deposition conditions are as follows: sputtering power 76 W, sputtering pressure 1.0 Pa, sputtering gas ratio 22: 1 A: O _ 2. The optical absorption band edge of 20 s.Cu_2O-TiO_2 nanotubes can be extended to more than 450nm, and the absorption at 400-600 nm band is enhanced significantly. Under white light irradiation, the degradation rate of methyl orange solution reached 94. 4% in 120 min, and its performance was improved by 1. 14 times (the degradation rate of single TiO_2 nanotube within 120 min was 44%).
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB383.1;TQ134.11
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 朱旗;吳磊;;納米管陣列輻射的初步研究[J];電波科學(xué)學(xué)報(bào);2008年02期
2 侯茹;任兆玉;;硅納米管的研究進(jìn)展[J];宜春學(xué)院學(xué)報(bào);2009年06期
3 賴躍坤,孫嵐,左娟,林昌健;氧化鈦納米管陣列制備及形成機(jī)理[J];物理化學(xué)學(xué)報(bào);2004年09期
4 李靜玲;陳文哲;劉明會(huì);張志剛;;Al_2O_3-TiO_2納米管制備研究[J];材料開發(fā)與應(yīng)用;2007年05期
5 李春陽(yáng);劉兵;王江峰;趙建坡;胡彬彬;杜祖亮;;鐵酸鉍納米管陣列與Y型鐵酸鉍納米管的合成及表征[J];科學(xué)通報(bào);2008年19期
6 劉志鋒;雅菁;鄂磊;;電沉積種子層化學(xué)控制生長(zhǎng)氧化鋅納米棒和納米管[J];無(wú)機(jī)化學(xué)學(xué)報(bào);2009年06期
7 唐元洪;裴立宅;;硅納米管的理論及制備研究進(jìn)展[J];材料導(dǎo)報(bào);2009年23期
8 凌世盛;王玲;薛建軍;王兆崴;孔令國(guó);楊慧;陳玉蘭;;CdS/TiO_2納米管陣列的制備及其光電催化活性研究[J];功能材料;2010年11期
9 程磊;江常龍;;氧化鋅納米棒及納米管陣列薄膜的制備[J];中國(guó)陶瓷工業(yè);2011年02期
10 朱文;劉喜;柳慧瓊;仝大利;楊君友;彭江英;;氧化鈦納米管陣列的表面聚集控制及光電化學(xué)特性[J];稀有金屬材料與工程;2011年06期
相關(guān)會(huì)議論文 前10條
1 張敏;閆國(guó)田;楊建軍;;MoO_3/TiO_2納米管陣列薄膜的制備及光電性能研究[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第12分會(huì)場(chǎng)摘要集[C];2010年
2 楊亮;曹陽(yáng);;高有序氧化鈦納米管陣列膜的制備[A];2008年中國(guó)機(jī)械工程學(xué)會(huì)年會(huì)暨甘肅省學(xué)術(shù)年會(huì)文集[C];2008年
3 李高仁;王安良;許瀚;;多壁納米管陣列電催化劑的設(shè)計(jì)、合成及其催化性能研究[A];中國(guó)化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第23分會(huì):電催化與潔凈能源電化學(xué)轉(zhuǎn)化[C];2014年
4 趙成龍;慕成;徐東升;;硅納米管陣列的制備及其應(yīng)用[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第10分會(huì)場(chǎng)摘要集[C];2010年
5 黃鳳翔;鐘秋菊;肖信;舒東;南俊民;;CuO/TiO_2納米管陣列薄膜電極的制備及光電性能[A];第二十八屆全國(guó)化學(xué)與物理電源學(xué)術(shù)年會(huì)論文集[C];2009年
6 甘嘉永;徐明;趙栩楓;謝世磊;盧錫洪;瞿俊雄;童葉翔;;CdS/TiO_2納米管陣列的電化學(xué)構(gòu)筑及其在光電化學(xué)池中的應(yīng)用[A];低碳技術(shù)與材料產(chǎn)業(yè)發(fā)展研討會(huì)論文集[C];2010年
7 王sヶ,
本文編號(hào):1927166
本文鏈接:http://sikaile.net/kejilunwen/huagong/1927166.html