天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 化工論文 >

高強低吸水發(fā)泡水泥的制備及性能研究

發(fā)布時間:2018-05-22 12:24

  本文選題:發(fā)泡水泥 + 抗壓強度; 參考:《山東科技大學》2017年碩士論文


【摘要】:發(fā)泡水泥作為一種節(jié)能型的新型建材,具有質(zhì)輕、保溫隔熱、防火性能優(yōu)越等特點,但是發(fā)泡水泥特殊的結(jié)構(gòu)使它的抗壓強度低、防水性能差,制約了發(fā)泡水泥的推廣和應用。因此,需要優(yōu)化發(fā)泡水泥的抗壓強度和防水性能,以利于發(fā)泡水泥的發(fā)展和應用。本文通過纖維增強、羧甲基纖維素鈉(CMC)增強和化學外加劑增強的方法,針對不同增強方法對發(fā)泡水泥的強度影響規(guī)律進行了研究;采用添加防水劑和減水劑的方法,考察了防水劑和減水劑對發(fā)泡水泥的吸水性能的影響。纖維增強實驗結(jié)果表明:在纖維的長度相同時,聚丙烯纖維、玻璃纖維和碳纖維的最佳摻量分別為0.4%、0.4%和0.2%,在最佳摻量條件下,摻加聚丙烯纖維的試樣的性能最優(yōu);在同種纖維相同摻量時,纖維長度較短時,對發(fā)泡水泥的增強效果較顯著。實驗最終確定添加0.4%的長度為6mm的聚丙烯纖維,此時發(fā)泡水泥的抗壓強度為1.20MPa,與空白試樣相比提高了 94%。CMC增強實驗結(jié)果表明:不同溫度的CMC溶液對發(fā)泡水泥的抗壓強度均有不同程度的提高。摻入25℃℃的CMC溶液可獲得的最佳抗壓強度為1.06MPa,摻入50℃CMC溶液可獲得的最佳抗壓強度為1.26MPa,分別比空白試樣提高71%和103%,此時CMC的最佳摻量分別為0.085‰和0.069‰。CMC在發(fā)泡水泥體系中,一方面可以促進水泥水化和粉煤灰發(fā)揮火山灰效應,另一方面能夠改變發(fā)泡水泥的微觀形貌,使孔壁結(jié)構(gòu)更為致密;瘜W外加劑增強試驗結(jié)果表明:硫酸氫鈉對發(fā)泡水泥抗壓強度影響比較大,硫脲的影響次之,而硫化鈉對發(fā)泡水泥的抗壓強度幾乎不存在影響。當硫酸氫鈉摻量為0.1%時,試樣的28d抗壓強度達到最大1.13MPa,較空白試樣提高了 30%。硫酸氫鈉的加入有利于水泥的水化,減少了不利于強度的Ca(OH)2的含量,水化產(chǎn)物彼此交叉連生形成網(wǎng)狀結(jié)構(gòu),使發(fā)泡水泥的骨架致密,提高了發(fā)泡水泥的強度。防水劑對發(fā)泡水泥吸水性能的影響研究表明:防水劑對發(fā)泡水泥的吸水率的效果不明顯,防水劑的用量從1%增加到5%時,吸水率從38%降低到34%,僅降低了 4%,而且防水劑使發(fā)泡水泥的抗壓強度降低,不適合用在本實驗的發(fā)泡水泥體系中。減水劑對發(fā)泡水泥吸水性能的影響研究表明:減水劑可以有效降低發(fā)泡水泥的吸水率,當萘系減水劑摻量從0.1%增加到0.9%時,發(fā)泡水泥的吸水率從38.4%降低到22%,在最佳摻量0.9%時,相比于空白試樣降低了 43%,而且在此用量下,萘系減水劑對發(fā)泡水泥的抗壓強度沒有危害;而聚羧酸減水劑的摻量在相同范圍變化時,發(fā)泡水泥的吸水率從38.4%降低到35%,效果不及萘系減水劑。根據(jù)以上研究,得到具有高強度和低吸水率的發(fā)泡水泥的配方:主材采用70%水泥+30%粉煤灰,其他添加劑為:雙氧水5%、6mm聚丙烯纖維0.4%、硬脂酸鈣0.8%、碳酸鋰0.08%、硫酸氫鈉0.1%、CMC0.069‰、萘系減水劑0.9%(占主材的重量百分數(shù)),水灰比0.4。制備的發(fā)泡水泥的抗壓強度為1.26MPa,干密度為286kg/m3,吸水率為22%,導熱系數(shù)0.045W/(m·K),與JC/T266《泡沫混凝土》中A03級泡沫混凝土的技術指標相比,用該配方制備的發(fā)泡水泥具有高強度、低吸水率的優(yōu)點。此外,為了擴大原材料的來源,降低發(fā)泡水泥的生產(chǎn)成本,本文還在此配方的基礎上,用礦渣替代部分水泥,用尾礦替代部分粉煤灰,研究了礦渣和尾礦對發(fā)泡水泥性能的影響規(guī)律及作用機理,研究結(jié)果表明:礦渣取代水泥對發(fā)泡水泥的抗壓強度有不利影響;但是,采用細磨硅質(zhì)尾礦取代部分粉煤灰,則會在一定程度上提高發(fā)泡水泥的抗壓強度,并且抗壓強度會隨著尾礦細度的提高而增大。根據(jù)以上研究得到由50%的水泥、20%的粉煤灰、20%的礦渣和10%的比表面積為1161.7m2/kg的尾礦組成的發(fā)泡水泥主材體系,制備出的發(fā)泡水泥的抗壓強度為1.19MPa,干密度為272kg/m3,吸水率為27%,導熱系數(shù)為0.049W/(m·K),其性能優(yōu)于JC/T266《泡沫混凝土》中A03級泡沫混凝土的技術指標。
[Abstract]:As a new type of energy-saving building materials, foamed cement has the characteristics of light quality, heat insulation and excellent fire resistance. But the special structure of foamed cement makes it low compressive strength and poor waterproof performance, which restricts the popularization and application of foamed cement. Therefore, it is necessary to optimize the compressive strength and waterproof performance of the cement, in order to make the bubble water. The development and application of mud. In this paper, the effect of different reinforcement methods on the strength of foamed cement was studied through fiber reinforcement, CMC enhancement and chemical admixtures, and the effects of waterproofing agent and water reducing agent on the water absorption of foamed cement were investigated by adding water repellent and water reducing agent. The results of fiber reinforced experiment show that the optimum mixing amount of polypropylene fiber, glass fiber and carbon fiber is 0.4%, 0.4% and 0.2% respectively when the fiber length is the same. Under the optimal dosage condition, the performance of the sample with polypropylene fiber is the best. When the same amount of fiber is the same, the fiber length is shorter, the enhancement effect on the foamed cement is obtained. The experiment finally confirmed the addition of 0.4% polypropylene fiber with a length of 6mm, at this time the compressive strength of the foamed cement was 1.20MPa. Compared with the blank sample, the 94%.CMC enhancement experimental results showed that the compressive strength of the foamed cement at different temperatures was improved in different degrees. The CMC solution added to 25 C was obtained. The optimum compressive strength is 1.06MPa, the best compressive strength of CMC solution added to 50 C is 1.26MPa, which is 71% and 103% higher than that of blank sample. At this time, the best dosage of CMC is 0.085 per thousand and 0.069 per 1000.CMC respectively in the foam cement system. On the one hand, the cement hydration and the fly ash can be promoted to play the volcanic ash effect, on the other hand, the effect can be changed. The microstructure of the foamed cement makes the pore wall structure more compact. The results of the chemical admixture enhancement test show that sodium bisulfate has a great influence on the compressive strength of the foamed cement, the effect of thiourea is the second, and the sodium sulfide has little effect on the compressive strength of the foamed cement. The 28d compressive strength of the sample is reached when the dosage of sodium hydrogen sulphate is 0.1%. To the maximum 1.13MPa, the addition of 30%. sodium bisulfate in the blank sample increases the hydration of cement and reduces the content of Ca (OH) 2, which is not good for strength. The hydration products cross together to form a network structure, which makes the skeleton of the foamed cement dense and improves the strength of the foamed cement. The effect of the waterproof agent on the water absorption of the foamed cement is studied. The results showed that the effect of waterproofing agent on the water absorption of foamed cement was not obvious. When the dosage of waterproofing agent increased from 1% to 5%, the water absorption rate was reduced from 38% to 34%, only 4%, and the waterproof agent reduced the compressive strength of the foamed cement. It was not suitable for the foaming cement system of this experiment. The influence of water reducing agent on the water absorption of the foaming cement was studied. Water reducing agent can effectively reduce the water absorption of foamed cement. When the dosage of naphthalene superplasticizer is increased from 0.1% to 0.9%, the water absorption of foamed cement is reduced from 38.4% to 22%. When the optimum dosage is 0.9%, it is 43% lower than that of the blank sample. Moreover, the naphthalene water reducing agent has no harm to the compressive strength of the foamed cement; and polycarboxylic acid When the amount of water reducing agent is changed in the same range, the water absorption rate of the foamed cement is reduced from 38.4% to 35%, and the effect is less than the naphthalene water reducing agent. According to the above study, the formula of foamed cement with high strength and low water absorption is obtained: the main material is 70% cement +30% fly ash, the other additives are hydrogen peroxide 5%, 6mm polypropylene fiber 0.4%, calcium stearate 0. 8%, lithium carbonate 0.08%, sodium bisulfate 0.1%, CMC0.069 per thousand and naphthalene water reducer 0.9% (the weight percentage of the main material). The compressive strength of the foamed cement prepared by water cement ratio 0.4. is 1.26MPa, the dry density is 286kg/m3, the water absorption rate is 22%, the thermal conductivity 0.045W/ (m K), compared with the technical indexes of JC/T266 < foam concrete > A03 foam concrete. The foaming cement prepared by formula has the advantages of high strength and low water absorption. In addition, in order to expand the source of raw materials and reduce the production cost of foamed cement, based on this formula, the slag replaced some cement and the tailings replaced some fly ash, and the influence law and effect of slag and tailings on the performance of foamed cement were studied. The results show that the slag replacement cement has a negative effect on the compressive strength of the foamed cement. However, the use of fine grinding silica tailings to replace some fly ash will increase the compressive strength of the foamed cement to a certain extent, and the compressive strength will increase with the increase of the fineness of the tailings. According to the above study, 50% cement is obtained. 20% of fly ash, 20% slag and 10% foam cement main system with specific surface area of 1161.7m2/kg, the compressive strength of the prepared foamed cement is 1.19MPa, the dry density is 272kg/m3, the water absorption is 27%, the thermal conductivity is 0.049W/ (M. K). The performance is better than the technology of JC /T266< foam concrete > A03 foam concrete technology. Mark.
【學位授予單位】:山東科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TQ172.1

【參考文獻】

相關期刊論文 前10條

1 孫楠;;聚丙烯纖維添加量對發(fā)泡水泥性能影響研究[J];廣州化工;2016年18期

2 蔣寧山;劉連新;吳成友;徐婷婷;劉亞;陳彪;;MAMF纖維對泡沫混凝土的改性研究[J];新型建筑材料;2016年08期

3 田雨澤;張興師;胡君一;孫秋柏;潘常升;;鐵尾礦粉對堿礦渣泡沫混凝土力學性能的影響[J];北京工業(yè)大學學報;2016年05期

4 李馳;方從啟;;低密度發(fā)泡水泥吸水性能的改性研究[J];新型建筑材料;2016年04期

5 龍志勤;王志剛;;碳纖維摻量增強泡沫混凝土性能試驗研究[J];輕工科技;2016年04期

6 楊長輝;王磊;田義;楊凱;江星;;堿礦渣泡沫混凝土性能研究[J];硅酸鹽通報;2016年02期

7 邱軍付;孫桂芳;王永魁;羅淑湘;;納米纖維增韌泡沫混凝土的機理研究[J];新型建筑材料;2015年12期

8 馬林;何順愛;;鈦礦渣對泡沫混凝土性能的影響研究[J];混凝土與水泥制品;2015年12期

9 王洪飛;李月香;王偉偉;;礦渣泡沫混凝土材料力學性能研究[J];墻材革新與建筑節(jié)能;2015年08期

10 馬林;;利用鈦礦渣制備超輕發(fā)泡混凝土的研究[J];新型建筑材料;2015年07期

相關會議論文 前3條

1 張磊蕾;王武祥;宋曉輝;廖禮平;王愛軍;;用普硅水泥制備發(fā)泡水泥的試驗研究[A];2013年混凝土與水泥制品學術討論會論文集[C];2013年

2 鐘世云;;關于纖維素醚在水泥砂漿中應用的若干問題[A];商品砂漿的科學與技術[C];2011年

3 韓珀;張君;;纖維增強泡沫混凝土力學性能研究[A];2011年混凝土與水泥制品學術討論會論文集[C];2011年

相關碩士學位論文 前7條

1 景帥帥;鐵尾礦粉泡沫混凝土特性研究[D];長安大學;2014年

2 張士停;鐵尾礦粉泡沫混凝土性能研究[D];吉林建筑大學;2013年

3 韓曉靜;超細粉煤灰混凝土力學性能試驗研究[D];安徽理工大學;2013年

4 孫慶豐;超低密度泡沫混凝土的研究[D];湖南大學;2013年

5 吳環(huán);改性再生混凝土抗?jié)B性試驗研究[D];合肥工業(yè)大學;2013年

6 吳嬌穎;低引氣緩凝型聚羧酸減水劑的合成及性能研究[D];沈陽建筑大學;2012年

7 伊晉宏;鐵尾礦粉泡沫混凝土的制備及其性能的研究[D];吉林建筑工程學院;2011年

,

本文編號:1922076

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huagong/1922076.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶ebd19***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
老司机精品线观看86| 人妻久久这里只有精品| 熟妇人妻av中文字幕老熟妇| 不卡中文字幕在线免费看| 日本在线 一区 二区| 国产一二三区不卡视频| 五月的丁香婷婷综合网| 日本妇女高清一区二区三区| 日韩人妻一区二区欧美| 欧美一区二区日韩一区二区| 欧美午夜伦理在线观看| 国产一级不卡视频在线观看| 好吊色免费在线观看视频| 91福利免费一区二区三区| 亚洲中文字幕在线观看四区| 久久国产成人精品国产成人亚洲| 精品熟女少妇一区二区三区| 九九久久精品久久久精品| 东京热男人的天堂社区| 国产欧美日本在线播放| 国产精品香蕉免费手机视频| 日韩精品中文字幕亚洲| 日韩欧美91在线视频| 日韩精品一区二区毛片| 国产又大又猛又粗又长又爽| 日本免费熟女一区二区三区| 国产成人免费激情视频| 国产精品日本女优在线观看| 国产老熟女乱子人伦视频| 亚洲专区中文字幕在线| 激情爱爱一区二区三区| 加勒比系列一区二区在线观看 | 少妇熟女精品一区二区三区| 日木乱偷人妻中文字幕在线| 国产精品亚洲欧美一区麻豆| 一区二区三区国产日韩| 午夜精品一区免费视频| 国产精品久久精品国产| 九九热视频经典在线观看| 国产又爽又猛又粗又色对黄| 最好看的人妻中文字幕|