納米多孔金屬對葡萄糖的電催化氧化及其在燃料電池中的應(yīng)用
本文選題:燃料電池 + 葡萄糖; 參考:《天津理工大學》2017年碩士論文
【摘要】:葡萄糖作為我們?nèi)粘I钜约吧顒又谐R姷奈镔|(zhì),是一種無毒、廉價、可再生的綠色能源,具有以下特點:1、來源廣泛,造紙、釀酒以及人體內(nèi)都含有葡萄糖。2、反應(yīng)的條件相對溫和,能在常溫、常壓、中性條件下反應(yīng),并且易于操作、控制和維護。3、生物相容性好,可為植入人體的人造器官或生物傳感器提供能量。葡萄糖作陽極的直接葡萄糖燃料電池(DGFC)具有綠色無污染、能量轉(zhuǎn)換效率高、響應(yīng)速度快、噪聲低等優(yōu)點,有望應(yīng)用于小型可移動電源和可植入醫(yī)療設(shè)備方面。但是,缺乏高效的葡萄糖氧化反應(yīng)催化劑是阻礙實際應(yīng)用的最大問題,最初研究的酶和微生物催化劑具有易失活、操作復雜等問題,而后來廣泛使用的粉末狀非生物催化劑也面臨活性低的問題。通過脫合金得到的具有三維雙連續(xù)孔道的納米多孔金(nanoporous gold,NPG),憑借其特殊的納米尺寸效應(yīng)和良好的電化學性能而獲得廣泛關(guān)注,這種材料具有較高孔隙率、高比表面積、超高導電性等優(yōu)點,并且NPG本身便可以作為一些氧化反應(yīng)的催化劑,并顯示出了良好的催化活性。此外,NPG本身還具有良好的生物相容性和較高穩(wěn)定性,顯示出良好的應(yīng)用前景。因此,本文主要探究了納米多孔金屬對葡萄糖的電催化氧化性能及其在葡萄糖燃料電池中的應(yīng)用,具體研究內(nèi)容如下:(1)通過自由腐蝕和電化學腐蝕兩種方法得到了兩種韌帶/骨架尺寸的納米多孔金薄膜,通過掃描電子顯微鏡對其形貌結(jié)構(gòu)和韌帶尺寸進行表征,分別在堿性和中性溶液中對葡萄糖的電催化氧化行為進行表征,結(jié)果發(fā)現(xiàn):不管在堿性或是中性環(huán)境中,電化學腐蝕制備的韌帶尺寸較小的NPG對葡萄糖的催化性能都優(yōu)于自由腐蝕制備的尺寸較大的NPG。在此基礎(chǔ)上,將納米多孔金作為基底,通過化學還原法沉積了致密的Pt殼,得到NPG-Pt核殼結(jié)構(gòu)催化劑,選用同樣的方法分析NPG-Pt對葡萄糖電催化氧化反應(yīng)的活性,得到了與NPG一致的結(jié)果:骨架尺寸較小的NPG-Pt催化活性明顯優(yōu)于骨架較大的。(2)通過電鍍的方法在NPG-Pt上修飾分散的Bi顆粒,組成NPG-PtBi作陽極和商業(yè)Pt/C作陰極的直接葡萄糖燃料電池,通過掃描電子顯微鏡(SEM)、透射電子顯微鏡(TEM)分析了材料的形貌結(jié)構(gòu),X射線光電子能譜儀(XPS)分析Bi元素的存在狀態(tài)。研究討論了操作溫度和葡萄糖燃料濃度以及NaOH濃度對直接葡萄糖燃料電池性能的影響,在陽極貴金屬負載量僅為0.45 mg cm-2(Au 0.3 mg和Pt 0.15 mg)的情況下,獲得0.9 V的開路電壓(OCV),最大(表面積)功率密度為8 mW cm-2,最大重量功率密度為18 mW mg-1,比商業(yè)Pt/C高約4.5倍。
[Abstract]:Glucose, as a common substance in our daily life and life activities, is a non-toxic, cheap, renewable green energy, with the following characteristics: 1, a wide range of sources, paper, Both brewery and human body contain glucose. 2, the reaction condition is relatively mild, can react under normal temperature, atmospheric pressure, neutral condition, and easy to operate, control and maintain. 3, good biocompatibility, It can provide energy for artificial organs or biosensors implanted into the human body. Direct glucose fuel cell (DGFC) with glucose as anode has the advantages of green non-pollution, high energy conversion efficiency, fast response speed and low noise. It is expected to be used in small removable power supply and implantable medical equipment. However, the lack of efficient catalysts for the oxidation of glucose is the biggest problem that hinders the practical application. The enzyme and microbial catalysts studied at the beginning have many problems, such as easy deactivation, complex operation and so on. The powder-like non-biocatalysts, which were widely used later, also faced the problem of low activity. Nano-porous gold nanoparticles with three dimensional double continuous channels obtained by dealloying have attracted wide attention due to their special nanometer size effect and good electrochemical properties. This material has high porosity and high specific surface area. Moreover, NPG can be used as a catalyst for some oxidation reactions, and it shows good catalytic activity. In addition, NPG also has good biocompatibility and high stability, showing a good prospect of application. Therefore, the electrocatalytic oxidation of glucose by nano-porous metal and its application in glucose fuel cell were studied in this paper. The main contents are as follows: (1) Nano-porous gold thin films of ligament / skeleton size were obtained by free corrosion and electrochemical corrosion. The morphology and size of ligaments were characterized by scanning electron microscope (SEM). The electrocatalytic oxidation of glucose was characterized in alkaline and neutral solutions. The catalytic properties of NPG prepared by electrochemical etching for glucose were better than those prepared by free etching. On this basis, the dense Pt shell was deposited by chemical reduction method, and the NPG-Pt core-shell structure catalyst was obtained. The activity of NPG-Pt in the electrocatalytic oxidation of glucose was analyzed by the same method. The results are consistent with the results of NPG: the catalytic activity of NPG-Pt with small skeleton size is obviously better than that with larger skeleton. By electroplating, the dispersed Bi particles are modified on NPG-Pt, and the direct glucose fuel cells composed of NPG-PtBi as anode and commercial Pt/C as cathode are formed. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to analyze the morphology and structure of the materials. X-ray photoelectron spectroscopy (XPS) was used to analyze the existence of Bi elements. The effects of operating temperature, glucose fuel concentration and NaOH concentration on the performance of direct glucose fuel cell were studied. When the loading of noble metal in anode was only 0.45 mg cm-2(Au 0.3 mg and Pt 0.15 mg), The maximum (surface area) power density is 8 MW cm ~ (-2) and the maximum weight power density is 18 MW mg ~ (-1), which is 4.5 times higher than commercial Pt/C.
【學位授予單位】:天津理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:O643.36;TM911.4
【相似文獻】
相關(guān)期刊論文 前10條
1 洪蔚;四大公司聯(lián)合開發(fā)燃料電池[J];上海環(huán)境科學;2000年03期
2 ;直接使用甲烷的新燃料電池[J];現(xiàn)代化工;2000年01期
3 ;燃料電池[J];化學工程師;2000年02期
4 徐德新,諸亦新;燃料電池的開發(fā)現(xiàn)狀與應(yīng)用前景[J];江蘇冶金;2000年02期
5 ;新型能源燃料電池[J];精細化工基地信息通訊;2000年06期
6 秦衛(wèi);;燃料電池的現(xiàn)狀[J];輕型汽車技術(shù);2000年06期
7 余亮;;燃料電池儲氫新技術(shù)[J];輕型汽車技術(shù);2000年Z1期
8 豐洋;天然氣膜法脫氮用于燃料電池[J];石油與天然氣化工;2001年02期
9 ;我研發(fā)出國際先進水平燃料電池[J];稀有金屬;2001年04期
10 ;形形色色的鋰電池和燃料電池[J];福建輕紡;2001年06期
相關(guān)會議論文 前10條
1 ;科學家為燃料電池開發(fā)新催化劑[A];節(jié)能減排論壇——福建省科協(xié)第八屆學術(shù)年會衛(wèi)星會議論文?痆C];2008年
2 郭曉汾;張毅;;燃料電池車輛及其新進展[A];河南省汽車工程學會第二屆科研學術(shù)研討會論文集[C];2005年
3 許谷;;燃料電池——改變未來世界的新科技——燃料電池系統(tǒng)中關(guān)鍵部分的研究[A];材料科學與工程技術(shù)——中國科協(xié)第三屆青年學術(shù)年會論文集[C];1998年
4 宋二虎;;電動自行車用燃料電池的產(chǎn)業(yè)化之路[A];電動車及新型電池學術(shù)交流會論文集[C];2003年
5 于澤庭;韓吉田;;燃料電池在家庭中的應(yīng)用[A];山東省第五屆制冷空調(diào)學術(shù)年會論文集[C];2004年
6 陸天虹;張玲玲;唐亞文;高穎;;各種燃料電池在產(chǎn)業(yè)化概況[A];2006中國動力電池高層論壇論文集[C];2006年
7 宮振華;張存滿;肖方f,
本文編號:1879936
本文鏈接:http://sikaile.net/kejilunwen/huagong/1879936.html