氮化硅陶瓷空心浮力球的制備及性能研究
本文選題:Si_3N_4陶瓷 + 空心浮力球; 參考:《上海材料研究所》2017年碩士論文
【摘要】:深海蘊含著大量的礦物、能源資源,生物物種多樣性高度豐富甚至還可能包含解開地球生命起源之謎的鑰匙。進(jìn)入21世紀(jì)以來,各國對深海探測和開發(fā)逐漸變得更為重視,而深海探測與開發(fā)離不開深潛裝備的發(fā)展,深海浮力材料是深潛裝備所需的一類關(guān)鍵材料。氮化硅(Si_3N_4)是一類綜合性能十分優(yōu)異的結(jié)構(gòu)陶瓷材料,已在工業(yè)、國防及航空航天等多個領(lǐng)域得到廣泛的使用。Si_3N_4陶瓷空心浮力球的靜水抗壓強(qiáng)度高,球體密度低(可提供的浮力大),且在海水環(huán)境下十分穩(wěn)定,是一種性能優(yōu)異的深海浮力材料。本文討論了陶瓷空心浮力球的設(shè)計,尤其是對半球殼成型工藝進(jìn)行了較深入的研究,初步提出了陶瓷空心浮力球質(zhì)量控制方法,并進(jìn)行了地面壓力試驗驗證,為Si_3N_4陶瓷空心浮力球的實際應(yīng)用提供了部分試驗依據(jù)。Si_3N_4陶瓷理論抗壓強(qiáng)度和彈性模量較高的同時,密度則相對較低,是陶瓷空心浮力球的最佳選材。理論計算表明內(nèi)徑100mm、壁厚2mm的Si_3N_4陶瓷空心浮力球的極限抗壓強(qiáng)度和極限屈曲強(qiáng)度分別為286.8和532.2 MPa,安全系數(shù)滿足SF"g2的條件(設(shè)計壓力115MPa)。通過ABAQUS有限元分析軟件對Si_3N_4陶瓷空心浮力球進(jìn)行屈曲強(qiáng)度和最大主應(yīng)力分布計算,發(fā)現(xiàn)屈曲強(qiáng)度計算值與理論公式計算值相接近,最大主應(yīng)力分布較為均勻,是一種理想的耐壓結(jié)構(gòu)體。對比了Si_3N_4陶瓷耐壓罐的ABAQUS分析結(jié)果發(fā)現(xiàn),陶瓷罐的結(jié)構(gòu)對稱性不如空心球體,從而存在較多的應(yīng)力集中區(qū)域,這些對于結(jié)構(gòu)的強(qiáng)度有著較大的影響!昂I瘛碧枱o人潛水器的失事原因并不一定源于陶瓷空心球的內(nèi)爆,其使用的陶瓷耐壓罐的可能性更大。研究了用于Si_3N_4陶瓷半球殼成型的凝膠注模成型和3D打印快速成型的工藝參數(shù)。研究發(fā)現(xiàn),凝膠注模成型的Si_3N_4陶瓷燒結(jié)件的致密度未能滿足要求,斷口顯微觀察發(fā)現(xiàn)生坯和燒結(jié)體中均存在較多針孔;3D打印成型的半球殼通過燒結(jié)可以制得理論密度達(dá)99.7%的半球殼樣件,材料的抗彎強(qiáng)度達(dá)到1000MPa以上,韋伯模數(shù)為12,充分表明了3D打印成型的Si_3N_4陶瓷燒結(jié)材料的力學(xué)性能優(yōu)異、可靠性高,通過3D打印成型技術(shù)可以進(jìn)行Si_3N_4陶瓷空心浮力球的制備;但是3D打印成型的陶瓷半球殼生坯在后處理工藝中收縮不均,形成了壁厚梯度,空心球的外徑同樣存在不均勻現(xiàn)象。對陶瓷空心球的主要規(guī)格參數(shù)進(jìn)行了測量,形成了相應(yīng)的質(zhì)量控制方法。Si_3N_4陶瓷半球殼的燒結(jié)密度應(yīng)達(dá)到3.23g/cm~3以上方為合格品;已形成了公稱直徑100毫米、不同壁厚、球體密度分別為0.33、0.39、0.45 g/cm~3的陶瓷空心球系列實驗室產(chǎn)品,這3個系列的產(chǎn)品浮力性能均優(yōu)于目前采用的萬米級深海浮力材料。對密度為0.33 g/cm~3的Si_3N_4陶瓷空心浮力球進(jìn)行了內(nèi)爆壓力試驗,29個樣本的平均抗壓強(qiáng)度達(dá)到203.8MPa,但測得的數(shù)據(jù)離散程度較大,表明制備工藝還尚需進(jìn)一步優(yōu)化。密度為0.39 g/cm~3的Si_3N_4陶瓷空心浮力球內(nèi)爆壓力能達(dá)到300MPa左右,具有更高的安全系數(shù)。Si_3N_4陶瓷空心浮力球成功地完成了145MPa下保壓10小時的靜壓疲勞試驗和115MPa下的1000次循環(huán)疲勞試驗。陶瓷空心球的內(nèi)爆過程研究表明,在受壓階段陶瓷空心球積累了大量彈性應(yīng)變能,內(nèi)爆發(fā)生的瞬間,一部分能量轉(zhuǎn)換為材料斷裂能,另一部分則轉(zhuǎn)變?yōu)閯幽?表現(xiàn)為以球心為中心的虹吸效應(yīng);能量和物質(zhì)開始由向中心處集聚瞬間變?yōu)橄蛑車鷶U(kuò)散,最終體系達(dá)到平衡。
[Abstract]:Deep sea contains a large number of minerals, energy resources, biological species diversity and even the key to the mystery of the origin of life of the earth. Since twenty-first Century, the exploration and development of the deep sea has gradually become more and more important, and deep sea exploration and development can not be separated from the development of deep submersible equipment. Deep sea buoyancy materials are deep submergence. Silicon nitride (Si_3N_4) is a kind of ceramic material with excellent comprehensive properties. It has been widely used in many fields such as industry, national defense and Aeronautics and Astronautics to get high static water compression strength of.Si_3N_4 ceramic hollow buoyancy ball, low density of sphere (which can provide large buoyancy), and it is very stable in sea water environment. It is a kind of deep sea buoyancy material with excellent performance. The design of ceramic hollow buoyancy ball is discussed in this paper, especially the forming process of the hemispherical shell is deeply studied. The quality control method of the ceramic hollow buoyancy ball is preliminarily put forward, and the ground pressure test is carried out to provide the practical application of the Si_3N_4 ceramic hollow buoyancy ball. The theoretical calculation shows that the ultimate compressive strength and the ultimate flexion strength of the inner diameter 100mm and the wall thickness 2mm hollow buoyancy ball are 286.8 and 532.2 MPa, respectively, according to the theory that the compressive strength and modulus of the ceramic hollow buoyancy ball are the best. The condition of SF "G2" (design pressure 115MPa). The flexion strength and maximum principal stress distribution of Si_3N_4 ceramic hollow buoyancy ball are calculated by ABAQUS finite element analysis software. It is found that the calculated value of the flexion intensity is close to the calculated value of the theoretical formula, and the maximum principal stress distribution is more uniform. It is a kind of ideal pressure resistant structure. Compared with Si_3N_4 The ABAQUS analysis results of the ceramic pressure tank show that the structural symmetry of the ceramic tank is not as good as that of the hollow sphere, and there are more stress concentration areas. These have great influence on the strength of the structure. The cause of the failure of the "Hai Shen" unmanned submersible is not necessarily due to the internal explosion of the ceramic hollow sphere. The technical parameters of gel injection molding and 3D printing for Si_3N_4 ceramic hemispherical shell molding were studied. It was found that the density of the Si_3N_4 ceramic sintered parts formed by gel casting could not meet the requirements. The microscopic observation of the fracture surface found that there were many pinholes in the blank and the sintered body, and the hemispherical shell of 3D was printed and formed. It is possible to produce a half spherical shell sample with theoretical density of 99.7%. The flexural strength of the material is above 1000MPa and the Webb modulus is 12. It shows that the mechanical properties of the Si_3N_4 ceramic sintered materials with 3D printing are excellent and the reliability is high. The Si_3N_4 ceramic hollow buoyancy ball can be prepared by the 3D printing molding technology; but 3D beating can be used. In the post treatment process, the shrinkage of the printed ceramic hemispherical shell is not uniform, the wall thickness gradient is formed, and the outer diameter of the hollow sphere is also inhomogeneous. The main specifications of the ceramic hollow sphere are measured, and the corresponding quality control method of the.Si_3N_4 ceramic hemisphere shell should be reached to more than 3.23g/cm~3. It has formed a series of laboratory products of ceramic hollow spheres with a nominal diameter of 100 mm, different wall thickness and 0.33,0.39,0.45 g/cm~3, respectively. The buoyancy performance of the 3 series of products is superior to the current 10000 meter deep sea buoyancy material. The internal explosion pressure of the Si_3N_4 ceramic hollow buoyancy ball with a density of 0.33 g/cm~3 is carried out. The experimental results show that the average compressive strength of the 29 samples is up to 203.8MPa, but the discretization of the measured data shows that the preparation process still needs to be further optimized. The internal explosion pressure of the Si_3N_4 ceramic hollow buoyancy ball with a density of 0.39 g/cm~3 can reach about 300MPa, and the higher safety factor.Si_3N_4 ceramic hollow buoyancy ball has successfully completed the 145MPa. The static pressure fatigue test of 10 hours under pressure and 1000 cyclic fatigue tests under 115MPa. The study of the internal explosion process of ceramic hollow spheres shows that a large amount of elastic strain energy has been accumulated in the ceramic hollow sphere at the compression stage, the moment of the initiation of the implosion, the conversion of part of the energy into the fracture energy of the material and the other part of the kinetic energy. The siphon effect of the center, the energy and substance begin to gather from the center and instantly change to the periphery, and the final system reaches equilibrium.
【學(xué)位授予單位】:上海材料研究所
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:P754.5;TQ174.758.12
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 龍宇飛;王鵬;李瑞;魏浩;;硅烷偶聯(lián)劑改性空心玻璃微珠/環(huán)氧樹脂固體浮力材料的制備及性能研究[J];全面腐蝕控制;2016年10期
2 鄢柳柳;徐任信;王鈞;楊小利;蔡浩鵬;;碳纖維增強(qiáng)輕質(zhì)耐壓復(fù)合材料的制備及性能研究[J];玻璃鋼/復(fù)合材料;2016年07期
3 王平;嚴(yán)開祺;潘順龍;張敬杰;;深水固體浮力材料研究進(jìn)展[J];工程研究-跨學(xué)科視野中的工程;2016年02期
4 任素娥;陶鑫;耿海濤;許西慶;劉家臣;;空心微球/環(huán)氧樹脂材料制備及性能研究[J];稀有金屬材料與工程;2015年S1期
5 張帆;單丹;胡芝娟;劉家臣;尤健;李霞;趙春芳;;無機(jī)非金屬固體浮力材料的研制[J];硅酸鹽通報;2015年08期
6 石佳睿;唐文勇;;載人深潛器鈦合金耐壓球殼極限強(qiáng)度可靠性分析[J];船海工程;2014年02期
7 張世政;于良民;李昌誠;趙海洲;路艷紅;;深潛用固體浮力材料的研究進(jìn)展[J];廣州化工;2012年18期
8 李樂;于良民;李昌誠;趙海洲;于晶;;固體浮力材料及其性能研究現(xiàn)狀[J];材料導(dǎo)報;2012年17期
9 王健;郭永奎;高玉坤;葛睿;;空心玻璃微珠/環(huán)氧樹脂復(fù)合材料的性能與應(yīng)用[J];塑料制造;2011年09期
10 白戰(zhàn)爭;趙秀麗;羅雪方;羅世凱;杜亮;;空心玻璃微珠/環(huán)氧復(fù)合材料的制備及性能研究[J];熱固性樹脂;2009年02期
相關(guān)重要報紙文章 前1條
1 劉志良;;打破“天花板” 走向“大眾化”[N];中國船舶報;2015年
相關(guān)碩士學(xué)位論文 前2條
1 黃炳坤;固體浮力材料的制備及性能研究[D];大連理工大學(xué);2015年
2 黃志彬;陶瓷粉末凝膠注模成型工藝研究[D];湖南大學(xué);2008年
,本文編號:1860987
本文鏈接:http://sikaile.net/kejilunwen/huagong/1860987.html