雜原子摻雜三維石墨烯和復(fù)合材料的制備及其電化學(xué)性能研究
發(fā)布時間:2018-04-30 22:35
本文選題:超級電容器 + 氮摻雜三維石墨烯; 參考:《蘭州理工大學(xué)》2017年碩士論文
【摘要】:三維石墨烯水凝膠是由氧化石墨烯分散液在高溫高壓狀態(tài)下自組裝而成的三維網(wǎng)狀材料。它具有大的比表面積、良好的機(jī)械性能和高的導(dǎo)電率,在超級電容器、催化、吸附等領(lǐng)域有重要的應(yīng)用。特別是在超級電容器領(lǐng)域,三維石墨烯能有效阻止二維石墨烯的堆疊,巨大的表面積提供了良好的雙電層電容。為了進(jìn)一步提高石墨烯的電化學(xué)性能,本文利用雜原子對三維石墨烯進(jìn)行摻雜改性,并和聚苯胺及鈷鎳雙金屬氫氧化物復(fù)合,以期制備出具有優(yōu)異電化學(xué)性能的電極材料。通過對電極材料的結(jié)構(gòu)表征和電化學(xué)性能測試,探索了雜原子摻雜三維石墨烯及其復(fù)合材料的結(jié)構(gòu)與性能。主要研究內(nèi)容如下:(1)分別以自制的氧化石墨烯(GO);GO和尿素;GO和硫脲為原材料,采用水熱法分別合成了三維還原氧化石墨烯(RGO),氮摻雜三維還原氧化石墨烯(RGN),氮、硫共摻雜三維還原氧化石墨烯(RGNS)等材料。分別測試了GO、RGO、RGN和RGNS四種材料的微觀結(jié)構(gòu)和電化學(xué)性能。結(jié)果表明RGO、RGN和RGNS材料均為三維多孔結(jié)構(gòu),電化學(xué)測試表明氮原子或氮、硫雙原子摻雜三維石墨烯均可提高三維石墨烯的比電容和循環(huán)穩(wěn)定性。(2)以尿素為還原劑和氮摻雜劑,GO和聚苯胺納米棒(PANI-NRs)為原料,利用水熱法合成了氮摻雜三維石墨烯/聚苯胺(RGNP)復(fù)合電極材料。利用FT-IR、XRD、SEM和XPS等檢測手段對材料進(jìn)行了表征,結(jié)果表明:PANI-NRs嵌入了氮原子摻雜的三維石墨烯層中。RGNP復(fù)合電極材料在3和30 m A cm~(-2)的電流密度下,比電容分別為589.3和472.6 F g~(-1),容量保持率為80.2%。在3 m A cm~(-2)電流密度下循環(huán)500次后,比電容保持80.5%。(3)以硫脲為還原劑和氮、硫共摻雜劑,GO和PANI-NRs為原料,利用水熱法合成了氮、硫共摻雜三維石墨烯/聚苯胺(RGNSP)復(fù)合電極材料。利用FT-IR、XRD、SEM和XPS等檢測手段對材料進(jìn)行了表征,并且測試了復(fù)合材料的電化學(xué)性能。結(jié)果表明:復(fù)合電極材料在2和20 m A cm~(-2)的電流密度下,比電容分別為735.2和570 F g~(-1),容量保持率為77.5%。在2 m A cm~(-2)的電流密度下循環(huán)500次后,比電容保持66.7%。而未摻雜三維石墨烯的聚苯胺電極材料,在2 m A cm~(-2)的電流密度下比電容為210 F g~(-1),循環(huán)500次后,比電容保持52.5%。(4)利用共沉淀法合成了氮摻雜三維石墨烯/鈷-鎳雙金屬氫氧化物(RGN/Co Ni-LDH)。利用FT-IR、XRD、SEM和XPS等檢測手段對材料進(jìn)行了表征,并且測試了復(fù)合電極材料的電化學(xué)性能。結(jié)果表明:鈷-鎳雙金屬氫氧化物生長在了氮摻雜三維石墨烯的表面,并呈現(xiàn)出花瓣似的層狀結(jié)構(gòu),這種結(jié)構(gòu)可增加電極材料和電解液的接觸面積,進(jìn)而提高電極材料的電化學(xué)性能。在5和50 m A cm~(-2)的電流密度下,RGN/Co Ni-LDH的比電容分別為2092.3和1809.8 F g~(-1),容量保持率為86.5%,在10 m A cm~(-2)的電流密度下循環(huán)1000次后,比電容保持80%。在兩電極非對稱系統(tǒng)中,RGN/Co Ni-LDH的功率密度為101.97 W kg~(-1),能量密度為49.4Wh kg~(-1)。
[Abstract]:Three-dimensional graphene hydrogels are three-dimensional reticulated materials which are self-assembled by graphene oxide dispersion at high temperature and high pressure. It has a large specific surface area, good mechanical properties and high conductivity. It has important applications in supercapacitor, catalysis, adsorption and other fields. Especially in the field of supercapacitors, three-dimensional graphene can effectively prevent the stacking of two-dimensional graphene, the huge surface area provides a good double-layer capacitance. In order to further improve the electrochemical performance of graphene, three dimensional graphene was modified by heteratomic doping, which was combined with Polyaniline and cobalt nickel bimetallic hydroxides to prepare electrode materials with excellent electrochemical properties. The structure and properties of heteroatom doped three-dimensional graphene and its composites were investigated by means of the structure characterization and electrochemical performance test of the electrode materials. The main contents of this study are as follows: (1) the three dimensional reductive graphene oxide (RGOO) was synthesized by hydrothermal method using the self-made graphene oxide (Glucene oxide) go and Urea go and thiourea as raw materials, respectively. The three dimensional reductive graphene oxide (RGNN), nitrogen, nitrogen were synthesized by nitrogen doping. Sulfur co-doped three-dimensional reduced graphene oxide RGNS and other materials. The microstructure and electrochemical properties of RGN and RGNS were measured. The results show that both RGN and RGNS are three-dimensional porous structures, and the electrochemical measurements show that nitrogen atoms or nitrogen, The specific capacitance and cyclic stability of three-dimensional graphene can be improved by using sulfur diatomic doping. (2) Urea as reducing agent and nitrogen dopant go and Polyaniline nanorods PANI-NRs as raw materials. The nitrogen-doped three dimensional graphene / Polyaniline RGNPs composite electrode materials were synthesized by hydrothermal method. The materials were characterized by FT-IRN XRDX SEM and XPS. The results show that the. RGNP composite electrode materials are embedded in the three dimensional graphene layer doped with nitrogen atoms at the current density of 3 and 30 Ma / cm ~ (-2), the results show that: PANI-NRs are embedded in the three dimensional graphene layer doped with nitrogen atoms, and the RGNP composite electrode material has a current density of 3 and 30 Ma / cm ~ (-2). The specific capacitors were 589.3 and 472.6 FG ~ (-1), respectively, and the capacity retention rate was 80.2%. At the current density of 3 Ma / cm ~ (-2), the specific capacitance kept at 80.5 and 80.5. 3) using thiourea as reducing agent and nitrogen, sulfur co-doped with go and PANI-NRs as raw materials, nitrogen and sulfur co-doped three-dimensional graphene / Polyaniline RGNSPs composite electrode materials were synthesized by hydrothermal method. The materials were characterized by FT-IR XRD SEM and XPS, and the electrochemical properties of the composites were tested. The results show that the specific capacitance of the composite electrode is 735.2 and 570F / g ~ (-1) at the current density of 2 and 20 Ma / cm ~ (-2), respectively, and the capacity retention is 77.5%. When the current density is 2 Ma / cm ~ (-2), the specific capacitance remains 66.7 after 500 cycles. However, the specific capacitance of the undoped three dimensional graphene Polyaniline electrode material is 210 F / g ~ (-1) at the current density of 2 Ma / cm ~ (-2). After 500 cycles, the specific capacitance of the electrode is 210F / g ~ (-1). Three dimensional nitrogen-doped graphene / cobalt-nickel bimetallic hydroxide (RGNR / Co Ni-LDH) was synthesized by coprecipitation method. The electrochemical properties of the composite electrode materials were characterized by FT-IRN XRDX SEM and XPS. The results show that cobalt-nickel bimetallic hydroxides grow on the surface of nitrogen-doped three-dimensional graphene and present petal-like layered structure, which can increase the contact area between electrode material and electrolyte. The electrochemical properties of electrode materials are improved. At the current density of 5 and 50 Ma / cm ~ (-2), the specific capacitance of RGNR / Co Ni-LDH is 2092.3 and 1809.8 F / g ~ (-1), respectively, and the capacity retention is 86.5%. After 1000 cycles at the current density of 10 Ma / cm ~ (-2), the specific capacitance keeps 80 steps. In a two-electrode asymmetric system, the power density and energy density of RGNR / Co Ni-LDH are 101.97 W / kg ~ (-1) and 49.4Wh ~ (-1) 路kg ~ (-1), respectively.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TQ127.11;TB332
【參考文獻(xiàn)】
相關(guān)期刊論文 前3條
1 Sunil P.Lonkar;Jean-Marie Raquez;Philippe Dubois;;One-Pot Microwave-Assisted Synthesis of Graphene/Layered Double Hydroxide(LDH) Nanohybrids[J];Nano-Micro Letters;2015年04期
2 嚴(yán)琳;孔惠;李在均;;3D石墨烯/鎳鋁層狀雙金屬氫氧化物的制備及超級電容性能[J];化學(xué)學(xué)報;2013年05期
3 牛玉蓮;金鑫;鄭佳;李在均;顧志國;嚴(yán)濤;方銀軍;;石墨烯/鈷鎳雙金屬氫氧化物復(fù)合材料的制備及電化學(xué)性能研究[J];無機(jī)化學(xué)學(xué)報;2012年09期
,本文編號:1826559
本文鏈接:http://sikaile.net/kejilunwen/huagong/1826559.html
最近更新
教材專著