高氯酸銨的微納結(jié)構(gòu)化及其防吸濕性能的研究
本文選題:疏水 + 高氯酸銨; 參考:《西南科技大學》2017年碩士論文
【摘要】:高氯酸銨(AP)因其較高有效含氧量而作為氧化劑被廣泛應用于軍事及航天領域,但在實際應用過程中AP易吸濕而對其使用性能造成影響,因此為提高AP的使用性能需對其進行疏水改性處理,以防止AP吸濕,關(guān)于AP的防吸濕研究報道很多,但尚未見從微納結(jié)構(gòu)和表面處理相結(jié)合的方式改善AP防吸濕性能的報道。本文通過AP的微納結(jié)構(gòu)化,結(jié)合表面處理技術(shù),制備了AP/SiO_2復合材料以及AP/CBC納米結(jié)構(gòu)材料。主要研究內(nèi)容如下:(1)AP/SiO_2復合材料的制備與表征。通過溶膠凝膠法制備了AP/SiO_2復合材料,并采用聚甲基氫基硅氧烷(含氫硅油PMHS),十二氟庚基丙基三甲氧基硅烷(氟硅烷FAS)和甲基三乙氧基硅烷(MTES)為表面改性劑對AP/SiO_2復合材料進行表面改性處理,以提高復合材料的防吸濕性能。采用SEM-EDS、XRD、FT-IR、接觸角測試、吸濕率測試對AP及其復合材料的形貌、成分、分子結(jié)構(gòu)以及防吸濕性能進行表征。研究結(jié)果表明:AP、SiO_2以及改性劑是有機復合在一起的,AP均勻的填充在SiO_2的孔洞中并且表面被一層表面改性劑所包覆。純AP的接觸角為0°,而經(jīng)過PMHS、FAS、MTES改性后的AP/SiO_2復合材料的接觸角分別為(64±2)°(50±2)°(42±2)°,相比于純AP有很大的提高說明其疏水性較AP有很大的提升。吸濕性測試表明48h后AP的吸濕率為1.13%,而經(jīng)過改性處理的AP/SiO_2復合材料吸濕性均小于純的AP,并且經(jīng)過PMHS改性后的AP/SiO_2復合材料的吸濕性最低僅為0.24%。(2)AP/CBC納米結(jié)構(gòu)材料的制備與表征。以高氯酸銨(AP)和碳化細菌纖維素(CBC)為原料,并以PMHS、FAS和MTES為表面改性劑,采用溶液分散-冷凍干燥法制備疏水AP/CBC納米結(jié)構(gòu)材料。通過掃描電子顯微鏡、紅外光譜儀、X射線衍射儀、恒溫恒濕箱、接觸角測試儀等分別表征了AP/CBC納米結(jié)構(gòu)材料的微觀形貌、分子結(jié)構(gòu)、吸濕性能等。結(jié)果表明,AP/CBC納米結(jié)構(gòu)材料的形貌變化較大,納米結(jié)構(gòu)材料是以CBC為網(wǎng)絡骨架結(jié)構(gòu),AP均勻的分散在CBC骨架所形成的孔洞中。對AP/CBC納米結(jié)構(gòu)材料進行表面改性后,材料表面被包覆并且表面變得光滑。由于改性劑表面含有大量的疏水基團,因此能有效阻止AP的吸潮,并且由CBC構(gòu)筑的這種結(jié)構(gòu)能夠有效防止AP的團聚以及包覆層的脫落。接觸角測試表明純AP的接觸角為0°,而經(jīng)過PMHS、FAS、MTES改性后的AP/CBC納米結(jié)構(gòu)材料的接觸角分別為(109±2)°(56±2)°(55±2)°,相比于純AP有較大的提高。吸濕性測試表明20天后AP的吸濕率為1.89%,而經(jīng)過改性處理的AP/CBC納米結(jié)構(gòu)材料吸濕性均小于純的AP,其中經(jīng)過PMHS改性后的AP/CBC納米結(jié)構(gòu)材料的吸濕性最低僅為0.31%。本研究通過選用合適的結(jié)構(gòu)材料構(gòu)筑具有特殊結(jié)構(gòu)的AP復合材料,再選用疏水改性劑對AP復合材料進行疏水表面的改性,既提高了高氯酸銨的防吸濕性能也為水溶性無機鹽類物質(zhì)由親水性向疏水性轉(zhuǎn)變提供了新的思路。
[Abstract]:Ammonium perchlorate (APO) is widely used as an oxidant in military and aerospace fields because of its high effective oxygen content. However, AP is easy to absorb moisture in practical application, which affects its performance. Therefore, in order to improve the performance of AP, hydrophobic modification is needed to prevent AP from absorbing moisture. There are a lot of researches on AP, but there is no report on how to improve the performance of AP by combining micro-nano structure with surface treatment. In this paper, AP/SiO_2 composites and AP/CBC nanostructured materials were prepared by micro-nano structure of AP and surface treatment technology. The main research contents are as follows: preparation and characterization of APS / SiO2 composites. AP/SiO_2 composites were prepared by sol-gel method. Polymethylhydrosiloxane (PMHSN), dodecafluoroheptyl trimethoxy silane (FASS) and methyl triethoxysilane (MTESs) were used as surface modifiers to modify the surface of AP/SiO_2 composites. In order to improve the hygroscopicity of composite materials. The morphology, composition, molecular structure and hygroscopicity of AP and its composites were characterized by SEM-EDSX XRDX FT-IR, contact angle test and moisture absorption test. The results show that the SiO_2 pore is uniformly filled with the organic composite of the two modifiers, and the surface is coated with a layer of surface modifiers. The contact angle of pure AP is 0 擄, and the contact angle of AP/SiO_2 composite modified by PMHS-FAS-MTES is 64 鹵2 擄50 鹵2 擄or 42 鹵2 擄respectively, which indicates that the hydrophobicity of pure AP is much higher than that of pure AP. The hygroscopicity test showed that the moisture absorption rate of AP was 1.13 after 48 h, while the moisture absorption of modified AP/SiO_2 composites was lower than that of pure APs, and the lowest hygroscopicity of AP/SiO_2 composites modified by PMHS was only the preparation and characterization of 0.24%.(2)AP/CBC nanostructured materials. The hydrophobic AP/CBC nanostructured materials were prepared by solution dispersion-freeze-drying method using ammonium perchlorate (APP) and carbonated bacterial cellulose (CBC) as raw materials and PMHSS-FASA and MTES as surface modifiers. The microstructure, molecular structure and hygroscopicity of AP/CBC nanostructures were characterized by scanning electron microscope, infrared spectrometer, X-ray diffractometer, constant temperature and humidity box, contact angle tester, etc. The results show that the morphology of CBC / CBC nanostructure material varies greatly. The nano-structure material is composed of CBC as the network skeleton structure and AP is uniformly dispersed in the pores formed by the CBC skeleton. After surface modification of AP/CBC nanostructured material, the surface of the material is coated and the surface becomes smooth. Because there are a lot of hydrophobic groups on the surface of the modifier, the moisture absorption of AP can be effectively prevented, and the structure constructed by CBC can effectively prevent AP from agglomeration and the coating layer from falling off. The contact angle test showed that the contact angle of pure AP was 0 擄, while that of the modified AP/CBC nanostructure material was 109 鹵2 擄/ 56 鹵2 擄/ 55 鹵2 擄, which was higher than that of pure AP. The hygroscopicity test showed that the moisture absorption rate of AP was 1.89 after 20 days, but the moisture absorption of modified AP/CBC nanostructured materials was lower than that of pure APs. The lowest moisture absorption of AP/CBC nanostructured materials modified with PMHS was 0.31. In this study, AP composites with special structure were constructed by selecting suitable structural materials, and hydrophobic modifiers were used to modify the hydrophobic surface of AP composites. It not only improves the hygroscopicity of ammonium perchlorate, but also provides a new idea for the transformation of water-soluble inorganic salts from hydrophilicity to hydrophobicity.
【學位授予單位】:西南科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TQ113.72;V512
【相似文獻】
相關(guān)期刊論文 前10條
1 李國勝,梁金生,丁燕,梁廣川,湯慶國;海泡石礦物材料的顯微結(jié)構(gòu)對其吸濕性能的影響[J];硅酸鹽學報;2005年05期
2 萬國順;黃紅軍;李志廣;胡建偉;王曉梅;蔣磊;;高吸濕性樹脂材料的研究進展[J];裝備環(huán)境工程;2010年04期
3 袁曉文,成來飛,張立同;孔隙率對碳/碳復合材料抗氧化性能與吸濕性能的影響[J];西北工業(yè)大學學報;1998年04期
4 曉禾;怎樣選擇夏裝衣料[J];廣西電業(yè);2005年05期
5 劉川文;黃紅軍;李志廣;王建江;;改性聚乙烯醇-氯化鈣共混物的吸濕性能研究[J];科學技術(shù)與工程;2007年06期
6 王曉梅;黃紅軍;萬紅敬;李志廣;胡建偉;;凹凸棒石/聚丙烯酸鈉合成條件對其吸水吸濕性能的影響[J];裝備環(huán)境工程;2013年06期
7 王漢青;楊榮郭;王正祥;康良麒;周慧文;;海泡石用于調(diào)濕涂料的吸濕性能改性研究[J];建筑熱能通風空調(diào);2013年03期
8 張杰,楊榮杰,劉云飛;硝酸銨的吸濕性研究[J];火炸藥學報;2001年03期
9 王婧;怎樣選擇夏季衣料[J];城市技術(shù)監(jiān)督;2001年07期
10 王婧娜;胡嵐;張皋;王克勇;嚴蕊;張婷;;球形ADN的吸濕機理[J];火炸藥學報;2014年01期
相關(guān)會議論文 前1條
1 于洪明;吳樹梁;于良峰;胡憲明;劉克健;游慧鵬;;大功率海上風電機組葉片吸濕性能的研究[A];第十九屆玻璃鋼/復合材料學術(shù)交流會論文集[C];2012年
相關(guān)重要報紙文章 前2條
1 王磊;腳臭巧選鞋墊解憂[N];保健時報;2004年
2 程吟;夏季著裝 ABC[N];西藏日報;2000年
相關(guān)博士學位論文 前1條
1 陳紅燕;竹條/乙烯基酯復合材料的界面吸濕性能及界面性能的AFM表征[D];東華大學;2010年
相關(guān)碩士學位論文 前10條
1 韓艷妮;農(nóng)村大氣氣溶膠化學組成、粒徑分布與吸濕性能研究[D];中國科學院研究生院(地球環(huán)境研究所);2016年
2 吳軍;高氯酸銨的微納結(jié)構(gòu)化及其防吸濕性能的研究[D];西南科技大學;2017年
3 王欣;牛皮棉鞋的吸濕和鞋腔濕度平衡研究[D];陜西科技大學;2012年
4 郭雪萍;吸濕性聚苯硫醚纖維的制備及其結(jié)構(gòu)與性能的研究[D];太原理工大學;2012年
5 王紅霞;光固化聚丙烯酸樹脂基復合材料制備及吸濕性能研究[D];天津大學;2005年
6 席文杰;高吸濕微穴聚酯纖維的制備與結(jié)構(gòu)性能的研究[D];蘇州大學;2003年
7 張希堯;聚丙烯酰胺系樹脂吸濕性功能研究[D];吉林大學;2009年
8 趙昔慧;天然保濕因子成分PCA-Na的制備與T/C織物保濕抗菌性研究[D];青島大學;2006年
9 劉海勇;新型負載型除濕材料性能的研究[D];華南理工大學;2013年
10 劉松濤;利用低溫等離子體技術(shù)改善聚丙烯纖維吸濕性能的研究[D];東華大學;2005年
,本文編號:1816689
本文鏈接:http://sikaile.net/kejilunwen/huagong/1816689.html