二氧化硅納米顆粒的功能化改性及應(yīng)用研究
本文選題:表面改性 + 復(fù)合納米結(jié)構(gòu)。 參考:《濟(jì)南大學(xué)》2015年碩士論文
【摘要】:納米材料的尺寸及形貌與其性能密切相關(guān),本文通過對(duì)反應(yīng)參數(shù)的精確控制,在改性二氧化硅納米顆粒的基礎(chǔ)之上制備了多種復(fù)合納米材料,并對(duì)復(fù)合納米材料的形貌及性能進(jìn)行了研究,證明了此類復(fù)合材料在催化及光催化領(lǐng)域具有廣闊的應(yīng)用前景。主要內(nèi)容及結(jié)果如下:1.制備粒度分布均勻的二氧化硅納米顆粒并對(duì)其進(jìn)行表面改性。用氨水、水、乙醇、正硅酸四乙酯作為反應(yīng)體系,通過對(duì)各種原料用量的精確控制,制備了粒徑均勻尺寸在100 nm左右的二氧化硅納米顆粒。利用合適摩爾比的3-巰丙基三乙氧基硅烷對(duì)二氧化硅納米顆粒進(jìn)行表面改性,利用水解及縮合反應(yīng),將二氧化硅納米顆粒表面均勻修飾了一層巰基官能團(tuán)。2.制備SiO2@Ag、SiO2@Au、Si O2@Fe3O4復(fù)合納米材料。以表面改性的二氧化硅納米顆粒作為基底,在上面均勻的沉積銀、金及四氧化三鐵納米顆粒,表面改性是制備此類復(fù)合納米結(jié)構(gòu)的關(guān)鍵因素。金與銀貴金屬納米顆粒是通過硼氫化鈉的還原作用制備的,四氧化三鐵納米顆粒是通過共沉淀法在氨水的參與下合成的。此制備方法簡(jiǎn)單靈巧,制備出的復(fù)合納米結(jié)構(gòu)形貌可控,并且表面的納米顆粒分散均勻、粒徑可控且與基底二氧化硅連接的牢固性高。3.Au催化劑與SiO2@Au催化劑的性能研究。實(shí)驗(yàn)制備了5 nm和10 nm兩種不同粒徑的Au催化劑,然后制備了兩種不同基底比例的SiO2@Au催化劑。結(jié)果證明,SiO2@Au比Au催化劑表現(xiàn)出了更高的催化活性,合適的基底量是SiO2@Au催化劑保持高催化活性的關(guān)鍵。這是因?yàn)?基底的存在可以獲得沒有表面配體的小尺寸的Au納米顆粒,高的表面能及界面能使其具有高的催化活性,并且該復(fù)合結(jié)構(gòu)在循環(huán)催化實(shí)驗(yàn)中表現(xiàn)出高的穩(wěn)定性和活性。4.合成SiO2@AgCl及SiO2@Ag3PO4復(fù)合納米結(jié)構(gòu),并研究其在紫外光下對(duì)羅丹明B的光催化降解性能。先將SiO2@Ag表面的Ag納米顆粒進(jìn)行生長(zhǎng),使其尺寸增大,再利用具有大尺寸Ag納米顆粒的SiO2@Ag復(fù)合結(jié)構(gòu)來制備SiO2@AgCl和SiO2@Ag3PO4光催化劑,此方法是一種值得研究的方法。實(shí)驗(yàn)證明,此類催化材料在紫外光照射下具備優(yōu)異的光催化性能,且SiO2@Ag3PO4比Si O2@AgCl的光催化性能優(yōu)異。5.合成單核或多核的兩種不同結(jié)構(gòu)的Ag@SiO2復(fù)合納米結(jié)構(gòu)。運(yùn)用單寧酸做還原劑制備Ag與Au納米顆粒,調(diào)控反應(yīng)體系的pH值,各獲得了兩種不同尺寸的Ag納米顆粒與Au納米顆粒。由于Ag納米顆粒尺寸隨反應(yīng)體系pH值的敏感性,我們利用Ag進(jìn)行了二氧化硅組裝,通過反應(yīng)過程中添加正硅酸乙酯步驟的精確調(diào)控,制備了單核和多核兩種不同形貌的復(fù)合結(jié)構(gòu)。并且利用L-精氨酸對(duì)丹寧酸修飾的銀納米顆粒進(jìn)行了表面改性及二氧化硅的包覆。
[Abstract]:The size and morphology of nanomaterials are closely related to their properties. In this paper, a variety of composite nanomaterials were prepared on the basis of modified silica nanoparticles by precise control of reaction parameters.The morphology and properties of the composite nano-materials were studied. It is proved that the composite has a broad application prospect in the field of catalysis and photocatalysis.The main contents and results are as follows: 1.Silica nanoparticles with uniform particle size distribution were prepared and modified on the surface.Using ammonia, water, ethanol and tetraethyl orthosilicate as reaction system, silica nanoparticles with uniform size of about 100nm were prepared by controlling the amount of raw materials.Silica nanoparticles were modified with 3-mercaptopropyl triethoxy silane in a suitable molar ratio. The surface of silica nanoparticles was uniformly modified with a thiol functional group by hydrolysis and condensation.SiO _ 2 and Sio _ 2 O2@Fe3O4 composite nanomaterials were prepared.The surface modification of silica nanoparticles on which silver, gold and iron trioxide nanoparticles were uniformly deposited was the key factor for the preparation of such composite nanostructures.Gold and silver noble metal nanoparticles were prepared by the reduction of sodium borohydride, and Fe _ 2O _ 4 nanoparticles were synthesized by co-precipitation with the participation of ammonia water.The preparation method is simple and dexterous, the morphology of the composite nanostructure is controllable, and the surface nanoparticles are uniformly dispersed, the particle size is controlled and the stability of the catalyst to the substrate silica is high. 3. The performance of au catalyst and SiO2@Au catalyst is studied.Two kinds of au catalysts with different diameters of 5 nm and 10 nm were prepared, and then two kinds of SiO2@Au catalysts with different substrates were prepared.The results show that the SiO2O2O- OU catalyst exhibits higher catalytic activity than au catalyst, and the key to maintain the high catalytic activity of the SiO2@Au catalyst is the appropriate amount of substrate.This is because the existence of the substrate can obtain small size au nanoparticles without surface ligands, and the high surface energy and interface can make them have high catalytic activity.Moreover, the composite structure showed high stability and activity in cyclic catalytic experiments.The composite nanostructures of SiO2@AgCl and SiO2@Ag3PO4 were synthesized and their photocatalytic degradation of Rhodamine B under ultraviolet light was studied.The Ag nanoparticles on the surface of SiO2@Ag were grown to increase their size, and then the SiO2@AgCl and SiO2@Ag3PO4 photocatalysts were prepared by using the SiO2@Ag composite structure with large Ag nanoparticles. This method is worth studying.The experimental results show that this kind of catalyst has excellent photocatalytic performance under ultraviolet irradiation, and the photocatalytic performance of SiO2@Ag3PO4 is better than that of Si O2@AgCl.Ag@SiO2 nanostructures with two different mononuclear or polynuclear structures were synthesized.Silver and au nanoparticles were prepared by using tannic acid as reducing agent. Two kinds of Ag nanoparticles and au nanoparticles with different sizes were obtained by adjusting the pH value of the reaction system.Due to the sensitivity of the size of Ag nanoparticles to the pH value of the reaction system, the silica was assembled with Ag, and the step of adding ethyl orthosilicate to the reaction process was accurately regulated.Mononuclear and multicore composite structures with different morphologies were prepared.The silver nanoparticles modified by tannin were modified by L-arginine and coated with silica.
【學(xué)位授予單位】:濟(jì)南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TQ127.2;TB383.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李國平,羅運(yùn)軍,譚惠民;以樹形分子為模板制備銀納米顆粒[J];化學(xué)學(xué)報(bào);2004年12期
2 吳青松,趙巖,張彩碚,李峰;片狀三角形銀納米顆粒的自組織行為與光學(xué)特性[J];物理學(xué)報(bào);2005年03期
3 沈劍滄;;銀納米顆粒的合成與表面增強(qiáng)拉曼光譜[J];蘭州大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年05期
4 闕彩紅;滿石清;;堿石灰玻璃表面長(zhǎng)方形銀納米顆粒的制備與表征[J];光譜實(shí)驗(yàn)室;2010年03期
5 張立云;沈晴;宋榮利;郭維;;銀納米顆粒表面電場(chǎng)增強(qiáng)的研究[J];價(jià)值工程;2011年14期
6 林源;林麗芹;林文爽;黃加樂;何寧;王海濤;孫道華;李清彪;;中草藥還原法制備銀納米顆粒及其抗菌性能[J];精細(xì)化工;2011年08期
7 周麗麗;馬忠權(quán);杜匯偉;丁虎;石建偉;楊潔;;織構(gòu)單晶硅表面上銀納米顆粒的制備及其反射性質(zhì)研究[J];光電子技術(shù);2012年03期
8 鄭守國;李淼;張健;曾新華;Jerome Plain;Renaud Bachelot;喬雷;;光纖聚合物探針在非均勻電磁場(chǎng)下的銀納米顆粒極化效應(yīng)[J];發(fā)光學(xué)報(bào);2013年05期
9 蔡娜;袁智勤;杜翼;何彥;;聚乙烯亞胺修飾的銀納米顆粒的制備研究及在肝素檢測(cè)中的應(yīng)用[J];化學(xué)傳感器;2013年03期
10 翟超;唐軍;溫?zé)w;薛晨陽;劉俊;丁宇凱;曹衛(wèi)達(dá);;銀納米顆粒的物理可控生長(zhǎng)技術(shù)[J];儀表技術(shù)與傳感器;2014年01期
相關(guān)會(huì)議論文 前10條
1 王青;楊文娟;羊小海;王柯敏;;生物合成的高穩(wěn)定性銀納米顆粒及其表征[A];中國化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第04分會(huì)場(chǎng)摘要集[C];2010年
2 曹淑妍;吳雪梅;馬士禹;張?jiān)破G;陳邦林;;銀納米顆粒表面覆蓋度對(duì)葡萄糖氧化酶活性的影響[A];中國化學(xué)會(huì)第十四屆膠體與界面化學(xué)會(huì)議論文摘要集-第4分會(huì):膠體分散與多組分體系[C];2013年
3 洪俊;聶秋華;王公平;徐鍵;戴世勛;;金銀納米顆粒的制備和表征及其摻雜玻璃三階非線性研究進(jìn)展[A];中國硅酸鹽學(xué)會(huì)特種玻璃分會(huì)第三屆全國特種玻璃會(huì)議論文集[C];2007年
4 江秀梅;王黎明;陳春英;;銀納米顆粒對(duì)中國倉鼠卵巢細(xì)胞的細(xì)胞毒性機(jī)制研究-持續(xù)的細(xì)胞攝入及胞內(nèi)降解和轉(zhuǎn)化[A];中國化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第35分會(huì):納米生物醫(yī)學(xué)中的化學(xué)問題[C];2014年
5 胡波;王侃;俞書宏;;微波輔助“綠色”合成銀納米顆粒[A];中國化學(xué)會(huì)第26屆學(xué)術(shù)年會(huì)無機(jī)與配位化學(xué)分會(huì)場(chǎng)論文集[C];2008年
6 陳斌斌;劉海;王健;黃承志;;果汁制備的穩(wěn)定的銀納米顆粒及其應(yīng)用[A];化學(xué)與創(chuàng)新藥物——2013年中國化學(xué)會(huì)產(chǎn)學(xué)研合作研討會(huì)會(huì)議論文集[C];2013年
7 詹蕾;黃承志;;三磷酸胞苷包被銀納米顆粒探針比色法檢測(cè)環(huán)境重金屬離子[A];中國化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第9分會(huì)場(chǎng)摘要集[C];2012年
8 馬士禹;穆勁;陳邦林;;葡萄糖氧化酶與銀納米顆粒的相互作用[A];中國化學(xué)會(huì)第十一屆膠體與界面化學(xué)會(huì)議論文摘要集[C];2007年
9 高敏杰;孫磊;;不同粒徑水溶性銀納米顆粒的制備及其抗菌性能研究[A];中國化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第12分會(huì)場(chǎng)摘要集[C];2012年
10 李慧s,
本文編號(hào):1738663
本文鏈接:http://sikaile.net/kejilunwen/huagong/1738663.html