天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 化工論文 >

高保水性聚合物改性砂漿的研制及性能研究

發(fā)布時(shí)間:2018-03-12 18:54

  本文選題:聚合物砂漿 切入點(diǎn):羥丙基甲基纖維素醚 出處:《沈陽(yáng)建筑大學(xué)》2015年碩士論文 論文類型:學(xué)位論文


【摘要】:考慮到建筑節(jié)能與環(huán)境保護(hù),以加氣混凝土砌塊、小型混凝土空心砌塊為代表的新型建材已成為現(xiàn)代建筑的墻體材料主要組成部分,但這些材料普遍具有吸水率高、干縮變形大的特點(diǎn),墻體易開(kāi)裂,要求罩面砂漿具有良好的保水性及韌性,減少由于基體吸水、變形而導(dǎo)致的墻面開(kāi)裂、脫落現(xiàn)象。本論文從改善建筑砂漿保水性入手,探討多種保水組分如羥丙基甲基纖維素醚、羧甲基纖維素鈉、膨潤(rùn)土,礦物摻合料如粉煤灰、礦粉等對(duì)砂漿力學(xué)性能(抗壓、折和粘結(jié)強(qiáng)度)、工作性能(保水性、稠度和流動(dòng)度)以及抗開(kāi)裂性能的影響規(guī)律,并通過(guò)SEM掃描電鏡觀察羥丙基甲基纖維素醚、羧甲基纖維素鈉和膨潤(rùn)土這三種保水組分在砂漿中分散后的微觀結(jié)構(gòu)形態(tài),分析保水性能的作用機(jī)理。研究結(jié)果表明:羥丙基甲基纖維素醚對(duì)于砂漿的粘結(jié)強(qiáng)度有較明顯的改善,對(duì)抗折強(qiáng)度略有改善,但對(duì)于抗壓強(qiáng)度幾乎沒(méi)有提高。當(dāng)摻量在0.3%的時(shí)候,砂漿的粘結(jié)強(qiáng)度最高。砂漿的抗折強(qiáng)度在0.4%的摻量時(shí)達(dá)到最高值;羧甲基纖維素鈉對(duì)砂漿的粘結(jié)強(qiáng)度有明顯改善,但對(duì)抗壓、折強(qiáng)度改善不明顯。隨著摻量的增加粘結(jié)強(qiáng)度逐漸提高,當(dāng)摻量在0.3%時(shí),砂漿的粘結(jié)強(qiáng)度最高;膨潤(rùn)土可以有效改善砂漿的抗折強(qiáng)度和粘結(jié)強(qiáng)度,對(duì)早期抗壓強(qiáng)度有較明顯提高,但對(duì)后期抗壓強(qiáng)度改善不顯著。膨潤(rùn)土摻量在5%時(shí),砂漿的抗折強(qiáng)度和粘結(jié)強(qiáng)度出現(xiàn)最高值;粉煤灰對(duì)砂漿早期的抗壓、折強(qiáng)度有損失,但在后期的強(qiáng)度有明顯提高。對(duì)于粘結(jié)強(qiáng)度略有改善,摻入時(shí)要嚴(yán)格控制其替代量。粉煤灰替代量在24%時(shí),砂漿28天的粘結(jié)強(qiáng)度出現(xiàn)最高值。而替代量在16%時(shí),7天的粘結(jié)強(qiáng)度出現(xiàn)最高值。粉煤灰替代量在28%時(shí),砂漿的28天抗壓、折強(qiáng)度最高;礦粉對(duì)砂漿的早期抗折強(qiáng)度有損失,對(duì)于抗壓強(qiáng)度和粘結(jié)強(qiáng)度都有較明顯改善,所以礦粉和粉煤灰相似,考慮粘結(jié)強(qiáng)度的優(yōu)化時(shí)要嚴(yán)格控制其替代量。礦粉替代量在24%時(shí),砂漿的粘結(jié)強(qiáng)度出現(xiàn)最高值。礦粉替代量在32%左右時(shí),砂漿的抗壓、折強(qiáng)度最高;羥丙基甲基纖維素醚過(guò)多量添加,對(duì)于砂漿的工作性能改善不顯著,甚至影響實(shí)驗(yàn)的操作,但是微量添加卻可以很好的改善砂漿的工作性能,且最高保水率可達(dá)99.7%;羥丙基甲基纖維素醚、羧甲基纖維素鈉、膨潤(rùn)土、粉煤灰和礦粉這五個(gè)組分對(duì)于砂漿的抗裂性能都有不同程度上的改善。只是礦物組分的摻合料對(duì)于砂漿的抗裂性改善效果要比聚合物組分的摻合料弱。從開(kāi)裂性能上考慮,羥丙基甲基纖維素醚的開(kāi)裂指數(shù)為31.2,要遠(yuǎn)優(yōu)于其他組分,是改善砂漿開(kāi)裂性能的最佳添加劑;通過(guò)SEM電鏡掃描觀察,聚合物的組分在砂漿中水解以后都會(huì)形成網(wǎng)或片狀的膜結(jié)構(gòu)穿插在砂漿中,而且聚合物的基團(tuán)具有較高的吸水性,能很好的吸附水分,防止其流失,具有較高的保水能力。
[Abstract]:Taking into account building energy conservation and environmental protection, new building materials, represented by aerated concrete blocks and small concrete hollow blocks, have become a major component of wall materials in modern buildings, but these materials generally have high water absorption, The wall is easy to crack because of the large dry shrinkage deformation, which requires the covering mortar to have good water retention and toughness, to reduce the cracking and shedding of the wall due to the water absorption and deformation of the matrix. This paper begins with the improvement of the water-retaining property of the building mortar. This paper discusses the mechanical properties (compressive strength, flexural strength and bond strength) of various water-retaining components such as hydroxypropyl methyl cellulose ether, sodium carboxymethyl cellulose, bentonite, mineral admixtures such as fly ash, mineral powder, etc. The effects of consistency and fluidity on cracking resistance were studied by SEM scanning electron microscope. The microstructures of three water-retaining components, hydroxypropyl methyl cellulose ether, sodium carboxymethyl cellulose and bentonite, were observed by SEM scanning electron microscope. The mechanism of water retention was analyzed. The results showed that the adhesive strength and flexural strength of the mortar were obviously improved by hydroxypropyl methyl cellulose ether, and the flexural strength was slightly improved. However, the compressive strength of mortar is almost unchanged. When the content of cement is 0.3%, the bond strength of mortar is the highest, the flexural strength of mortar reaches the highest value at the content of 0.4%, and the bond strength of mortar is obviously improved by sodium carboxymethyl cellulose. However, the compressive strength and flexural strength were not improved obviously. The bond strength of mortar increased gradually with the increase of the content of bentonite, and the bond strength of mortar was the highest when the content was 0.3. Bentonite could effectively improve the flexural strength and bond strength of mortar, and bentonite could effectively improve the flexural strength and bond strength of mortar. The flexural strength and bond strength of mortar have the highest value when the content of bentonite is 5, and the compressive strength and flexural strength of fly ash are lost in the early stage of mortar, while the compressive strength of mortar in the early stage is improved obviously, but the improvement of compressive strength in the later stage is not obvious. But in the later stage, the strength has been improved obviously. The bond strength is slightly improved, and the substitution quantity of fly ash should be strictly controlled when it is mixed. When the substitution quantity of fly ash is 24, The bond strength of mortar appeared the highest value at 28 days, and the bond strength of 7 days after 16 days of substitution. When the replacement amount of fly ash was 28, the compressive strength of mortar was 28 days and the flexural strength was the highest; the mineral powder had a loss on the early flexural strength of mortar. The compressive strength and bond strength are obviously improved, so the mineral powder is similar to fly ash. When considering the optimization of bond strength, the substitution quantity of mineral powder should be strictly controlled. The bond strength of mortar has the highest value. When the substitution of mineral powder is about 32%, the compressive strength and flexural strength of mortar are the highest, and the addition of hydroxypropyl methyl cellulose ether is not significant to the performance of mortar, and even affects the operation of experiment. However, microaddition can improve the performance of mortar, and the highest water retention rate can reach 99.7%; hydroxypropyl methyl cellulose ether, carboxymethyl cellulose sodium, bentonite, hydroxypropyl methyl cellulose ether, carboxymethyl cellulose sodium, bentonite, hydroxypropyl methyl cellulose ether, carboxymethyl cellulose sodium, The five components of fly ash and mineral powder have improved the crack resistance of mortar to some extent, but the effect of the admixture of mineral component is weaker than that of the admixture of polymer component. The cracking index of hydroxypropyl methyl cellulose ether is 31.2, which is much better than other components, and is the best additive to improve the cracking property of mortar. After hydrolysis of polymer in mortar, the polymer components will form a network or a membrane structure in the mortar, and the polymer group has a high water absorption, good adsorption of water, prevent its loss, and has a higher water retention capacity.
【學(xué)位授予單位】:沈陽(yáng)建筑大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TQ177.6

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 賈均;陳先朝;;鑄造鋼—銅鉛合金雙金屬軸承粘結(jié)強(qiáng)度的研究[J];金屬科學(xué)與工藝;1987年04期

2 黃偉民;瓦楞紙板粘結(jié)強(qiáng)度[J];上海包裝;2003年02期

3 謝智雄;張作誠(chéng);周建方;周美英;;纖維塑料筋粘結(jié)強(qiáng)度的研究[J];玻璃鋼/復(fù)合材料;2006年06期

4 蔡博儒;劉新衛(wèi);朱文保;;新型粘結(jié)劑的研究——粘結(jié)強(qiáng)度影響因素的研究[J];粘接;1984年02期

5 唐春平;;磷酸鹽修補(bǔ)材料粘結(jié)強(qiáng)度影響因素研究[J];混凝土與水泥制品;2012年02期

6 楊建軍;殷素紅;徐小彬;文梓蕓;;土壤聚合物材料粘結(jié)強(qiáng)度的試驗(yàn)研究[J];腐蝕與防護(hù);2009年06期

7 崔成秀;;燒結(jié)金屬摩擦材料粘結(jié)強(qiáng)度的試驗(yàn)方法[J];粉末冶金技術(shù);1989年03期

8 鄧宗才;王作虎;李建輝;牛翠兵;;溫度對(duì)芳綸復(fù)合材料與混凝土抗剪切粘結(jié)強(qiáng)度影響的試驗(yàn)研究[J];高科技纖維與應(yīng)用;2006年04期

9 江艷芳;張玨瑩;;涂層鋼板用的粘結(jié)劑[J];鞍鋼技術(shù);1984年12期

10 吳國(guó)華,羅吉榮,黃乃瑜,徐慶柏;鑄型涂料粘結(jié)強(qiáng)度的研究[J];中國(guó)鑄造裝備與技術(shù);1999年04期

相關(guān)會(huì)議論文 前10條

1 劉麗;江巧紅;許錦心;;三種粘結(jié)系統(tǒng)微剪切粘結(jié)強(qiáng)度的比較研究[A];第六次全國(guó)口腔修復(fù)學(xué)學(xué)術(shù)會(huì)議論文摘要匯編[C];2009年

2 李品鈺;李明;王智文;何唯平;孫宏賢;;纖維增強(qiáng)復(fù)合材料筋與混凝土的粘結(jié)試驗(yàn)數(shù)據(jù)統(tǒng)計(jì)分析[A];第八屆全國(guó)建設(shè)工程FRP應(yīng)用學(xué)術(shù)交流會(huì)論文集[C];2013年

3 邱憬;于衛(wèi)強(qiáng);張富強(qiáng);;非貴烤瓷基底口內(nèi)噴砂后的表面粗糙度與瓷修補(bǔ)樹(shù)脂粘結(jié)強(qiáng)度研究[A];第六次全國(guó)口腔修復(fù)學(xué)學(xué)術(shù)會(huì)議論文摘要匯編[C];2009年

4 宣瑋;侯本祥;;牙本質(zhì)粘結(jié)系統(tǒng)與牙釉質(zhì)和牙本質(zhì)粘結(jié)強(qiáng)度的研究[A];全國(guó)第三次牙體牙髓病學(xué)臨床技術(shù)研討會(huì)論文匯編[C];2009年

5 王建鴻;石連水;黃輝;章福保;;γ-MPS偶聯(lián)劑對(duì)三種不同金屬與Filtek樹(shù)脂粘結(jié)強(qiáng)度影響的對(duì)比研究[A];中華口腔醫(yī)學(xué)會(huì)口腔材料學(xué)專業(yè)委員會(huì)第七次全國(guó)口腔材料學(xué)術(shù)交流會(huì)論文匯編[C];2011年

6 趙奇;;牙齒漂白對(duì)粘結(jié)強(qiáng)度的影響[A];2009“牙齒顏色的識(shí)別與美學(xué)再現(xiàn)”專題研討會(huì)論文匯編[C];2009年

7 王瑾;李建;;聚合物對(duì)瓷磚膠拉伸粘結(jié)強(qiáng)度的影響[A];第二屆全國(guó)商品砂漿學(xué)術(shù)交流會(huì)論文集[C];2007年

8 董軍;季韜;林旭健;何國(guó)忠;;水膠比對(duì)加固砂漿界面劑粘結(jié)強(qiáng)度的影響[A];第15屆全國(guó)結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集(第Ⅱ冊(cè))[C];2006年

9 岳峰;黃亮高;李少?gòu)?qiáng);;TJ-10型碳纖維粘結(jié)強(qiáng)度檢測(cè)儀的研究[A];第八屆全國(guó)建設(shè)工程無(wú)損檢測(cè)技術(shù)學(xué)術(shù)會(huì)議論文集[C];2004年

10 劉志勇;趙奇;鄭剛;;自酸蝕與全酸蝕粘接系統(tǒng)對(duì)牙釉質(zhì)剪切粘結(jié)強(qiáng)度的研究[A];全國(guó)第三次牙體牙髓病學(xué)臨床技術(shù)研討會(huì)論文匯編[C];2009年

相關(guān)博士學(xué)位論文 前1條

1 李曉娜;硅橡膠與丙烯酸樹(shù)脂粘結(jié)的系列研究[D];第四軍醫(yī)大學(xué);2007年

相關(guān)碩士學(xué)位論文 前10條

1 魏征;高保水性聚合物改性砂漿的研制及性能研究[D];沈陽(yáng)建筑大學(xué);2015年

2 賴斌輝;四種單組份自酸蝕粘結(jié)劑微拉伸粘結(jié)強(qiáng)度的實(shí)驗(yàn)研究[D];浙江大學(xué);2009年

3 鄧璐;介孔二氧化硅涂層對(duì)氧化鋯樁表面改性后粘結(jié)強(qiáng)度的影響[D];南昌大學(xué);2012年

4 徐雅妮;酸蝕時(shí)間對(duì)正畸粘結(jié)劑粘結(jié)強(qiáng)度及去粘結(jié)后牙色的影響[D];中南大學(xué);2013年

5 向榮;放射線對(duì)牙體硬組織及其微拉伸粘結(jié)強(qiáng)度的影響[D];廣西醫(yī)科大學(xué);2011年

6 張智星;濕度對(duì)“單瓶”牙本質(zhì)粘結(jié)系統(tǒng)微拉伸粘結(jié)強(qiáng)度的影響[D];武漢大學(xué);2005年

7 鄭闈穎;六種正畸粘結(jié)劑粘結(jié)強(qiáng)度的比較分析[D];浙江大學(xué);2014年

8 張林;硅橡膠在頜骨缺損中的應(yīng)用及軟襯硅橡膠與樹(shù)脂粘結(jié)強(qiáng)度的實(shí)驗(yàn)研究[D];南昌大學(xué);2011年

9 鄭靜;水性聚氨酯分子結(jié)構(gòu)與粘結(jié)強(qiáng)度的關(guān)系研究[D];中北大學(xué);2014年

10 張磊;不同表面粗糙度的烤瓷用金屬與牙本質(zhì)之間粘結(jié)強(qiáng)度的效果評(píng)價(jià)研究[D];青島大學(xué);2010年

,

本文編號(hào):1602844

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huagong/1602844.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶58b52***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com