天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 化工論文 >

平面撞擊流反應(yīng)器流動(dòng)模式、混合機(jī)理及過(guò)程強(qiáng)化研究

發(fā)布時(shí)間:2018-03-12 10:11

  本文選題:平面撞擊流 切入點(diǎn):反應(yīng)器 出處:《華東理工大學(xué)》2015年博士論文 論文類型:學(xué)位論文


【摘要】:撞擊流作為強(qiáng)化混合的重要手段,已在煤氣化和納米粒子制備等領(lǐng)域得到成功應(yīng)用。掌握撞擊流流動(dòng)及混合機(jī)理,對(duì)撞擊流反應(yīng)器的開(kāi)發(fā)、設(shè)計(jì)和運(yùn)行至關(guān)重要。本文采用實(shí)驗(yàn)和數(shù)值模擬相結(jié)合的方法,系統(tǒng)研究了平面撞擊流的偏轉(zhuǎn)振蕩特性以及平面撞擊流反應(yīng)器內(nèi)流體的流動(dòng)、混合機(jī)理及過(guò)程強(qiáng)化。具體內(nèi)容歸納如下:1.采用粒子圖像測(cè)速儀、高速攝像儀和流動(dòng)可視化等實(shí)驗(yàn)手段和大渦模擬對(duì)自由平面撞擊流的偏轉(zhuǎn)振蕩進(jìn)行了研究,考察了射流雷諾數(shù)、噴嘴間距、邊界受限程度和射流寬高比等因素對(duì)偏轉(zhuǎn)振蕩的影響,揭示了偏轉(zhuǎn)振蕩產(chǎn)生和維持的原因。結(jié)果表明,射流自身不穩(wěn)定性、撞擊區(qū)撞擊不穩(wěn)定性是引起偏轉(zhuǎn)振蕩的本質(zhì)原因,而速度和壓力的周期性變化和轉(zhuǎn)換是維持偏轉(zhuǎn)振蕩的原因;偏轉(zhuǎn)振蕩周期主要由射流速度和噴嘴間距決定,還受射流寬高比與邊界受限程度的影響;與雷諾時(shí)均模型相比,大渦模擬所得的結(jié)果與實(shí)驗(yàn)結(jié)果吻合較好。2.對(duì)不同雷諾數(shù)和幾何結(jié)構(gòu)的平面撞擊流反應(yīng)器內(nèi)流動(dòng)特性進(jìn)行了研究,重點(diǎn)研究了文獻(xiàn)中尚未報(bào)道過(guò)的半偏轉(zhuǎn)振蕩,考察了射流間距、射流寬高比、反應(yīng)器腔室深度和頂部空間等結(jié)構(gòu)參數(shù)對(duì)半偏轉(zhuǎn)振蕩的影響,揭示了半偏轉(zhuǎn)振蕩的產(chǎn)生機(jī)制。結(jié)果表明,平面撞擊流反應(yīng)器內(nèi)存在分離流、吞噬流、撞擊面擺動(dòng)振蕩、半偏轉(zhuǎn)振蕩等流動(dòng)模式;半偏轉(zhuǎn)振蕩發(fā)生在進(jìn)口平面以下,其無(wú)因次周期約為自由平面撞擊流的一半,臨界雷諾數(shù)隨著無(wú)因次射流間距和射流高寬比的增大而減;半偏轉(zhuǎn)振蕩由平面射流自身不穩(wěn)定性引起,且靠速度和壓力變化來(lái)維持,反應(yīng)器腔室頂部正壓抑制了射流向反應(yīng)器頂部偏轉(zhuǎn)。3.基于平面撞擊流不穩(wěn)定性,設(shè)計(jì)了新穎的撞擊流激勵(lì)振蕩裝置,考察了雷諾數(shù)、激勵(lì)頻率、激勵(lì)振幅和結(jié)構(gòu)參數(shù)等因素對(duì)振蕩行為的影響,獲得了平面撞擊流及反應(yīng)器的激勵(lì)振蕩規(guī)律。結(jié)果表明,異步聲波激勵(lì)能夠引起撞擊面發(fā)生與激勵(lì)頻率一致的水平振蕩,振幅小于10%的聲波激勵(lì)對(duì)偏轉(zhuǎn)振蕩影響不顯著,隨著同步或異步激勵(lì)振幅的增大,偏轉(zhuǎn)振蕩會(huì)轉(zhuǎn)變?yōu)榫又信鲎不蛩秸袷。聲波激?lì)作用下平面射流渦旋結(jié)構(gòu)的變化是引起振蕩模式轉(zhuǎn)化的主要原因。平面撞擊流反應(yīng)器內(nèi)流量激勵(lì)能夠引起撞擊面的水平振蕩,且振蕩頻率與激勵(lì)頻率一致,而撞擊面與反應(yīng)器壁面的相互作用是擺動(dòng)振蕩產(chǎn)生的主要原因。當(dāng)撞擊面振幅小于0.5倍射流間距時(shí),撞擊面擺動(dòng)振蕩幅度與激勵(lì)振幅和射流速度成正比,而與激勵(lì)頻率成反比。4.利用激光誘導(dǎo)熒光技術(shù)對(duì)平面撞擊流反應(yīng)器內(nèi)的流體混合及激勵(lì)強(qiáng)化過(guò)程進(jìn)行了研究,考察了流體黏度、雷諾數(shù)、反應(yīng)器結(jié)構(gòu)參數(shù)、激勵(lì)條件等對(duì)平面撞擊流反應(yīng)器內(nèi)流動(dòng)形態(tài)和混合效果的影響。結(jié)果表明,平面撞擊流反應(yīng)器內(nèi)處于分離流模式時(shí),流體的混合效果較差,而轉(zhuǎn)變?yōu)樽猿终袷幠J綍r(shí),流體的混合效果顯著提升。在射流間距較大的平面撞擊流反應(yīng)器內(nèi),較低雷諾數(shù)下發(fā)生了半偏轉(zhuǎn)振蕩,達(dá)到了良好的混合效果;激勵(lì)能夠明顯提高低雷諾數(shù)分離流模式下的流體混合效果。
[Abstract]:As an important means to strengthen the impact of mixed, has been successfully applied in the coal gasification and the preparation of other fields. Grasp the impinging stream flow and mixing mechanism, the development of impinging stream reactor, it is important to design and operation. This paper uses the combined method of experiment and numerical simulation, oscillation characteristics of deflection plane impinging stream system research the plane and impinging stream reactor fluid flow and mixing process, strengthening mechanism. Specific contents are summarized as follows: 1. using particle image velocimetry, high-speed camera and flow visualization experiment method and large eddy simulation of deflection oscillation free plane impinging stream is studied, investigated the jet Reynolds number, nozzle spacing. The influence factors of boundary limitation and jet aspect ratio of deflecting oscillation, reveals the deflection produces and maintains the oscillation. The results show that the jet instability itself The impact, the impact of instability is caused by the nature of the reasons deflecting oscillation, and the periodic change and conversion speed and pressure is the reason of maintaining deflection oscillations; deflection period of oscillation is mainly determined by the jet velocity and jet nozzle spacing, is also affected by the aspect ratio and boundary limitation; compared with the Reynolds averaged model, large eddy the simulation results agree well with the experimental results of.2. on different Reynolds number and geometric structure of plane impinging stream reactor flow characteristics were studied, focusing on the half deflection oscillation has not yet been reported, investigated the jet distance, jet width ratio, influence the reactor chamber depth and space structure parameters on the top deflecting oscillation, reveal the mechanism of oscillation half deflection. The results show that the plane fluidwere has separated flow, phagocytosis flow, impact surface of swing oscillation, half deflection vibration On the flow pattern; half deflection oscillations occur at the inlet plane, the dimensionless period is about half of the free plane impinging stream, the critical Reynolds number decreases with dimensionless jet spacing and jet height width ratio increases; half deflection plane jet oscillation by itself does not lead to stability, and the changes of velocity and pressure. Maintain the reactor chamber at the top of positive pressure inhibited the shooting to the top of the reactor deflection.3. plane impinging flow instability based on the design of a novel impinging stream excited oscillation device, effects of Reynolds number, excitation frequency, excitation amplitude and the effect of structure parameters on the oscillation behavior, the oscillation characteristic of plane impinging stream and the reactor. The results show that the asynchronous acoustic excitation can cause the impact surface occurrence and excitation frequency oscillation level consistent, less than 10% of the amplitude of the acoustic excitation affects the deflection of oscillation is not significant, With the increase of synchronous or asynchronous excitation amplitude, oscillation deflection will be transformed into the middle level of collision or oscillation. Variation of wave excitation planar jet vortex structure is mainly caused by oscillation mode transformation. The planar impact flow reactor can cause the impact surface of horizontal vibration excitation, and the oscillation frequency and excitation frequency, and the impact of interaction surface and the reactor wall is the main reason for the swing oscillation. When the impact surface amplitude is less than 0.5 times the jet distance, the impact surface of swing oscillation amplitude and excitation amplitude and velocity is proportional to the excitation frequency and inversely proportional to.4. using laser induced fluorescence technique was studied for planar fluid mixing and impinging stream the incentive in the reactor intensive process, the effects of fluid viscosity, Reynolds number, the structure of the reactor parameters, excitation conditions on plane fluidwere flow Influence of morphology and mixing effect. The results show that the plane fluidwere in separated flow mode, poor mixing effect of fluid, and transformed into a self sustained oscillation mode, the mixing effect of fluid significantly. In the larger pitch plane jet impinging stream reactor, low Reynolds number under half deflection oscillation, achieves good mixing effect; incentive can significantly improve the fluid mixing effect of low Reynolds number flow separation mode.

【學(xué)位授予單位】:華東理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TQ052

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 夏代寬,段天平,夏雨;兩側(cè)及軸向進(jìn)料同向流水平撞擊流反應(yīng)器研究[J];高;瘜W(xué)工程學(xué)報(bào);2002年02期

2 張建偉;汪洋;湯慧華;焦麗;;浸沒(méi)循環(huán)撞擊流反應(yīng)器撞擊區(qū)壓力波動(dòng)的混沌分析[J];化工學(xué)報(bào);2005年12期

3 禹言芳,張建偉;撞擊流反應(yīng)器流場(chǎng)的有限元分析初探[J];化工設(shè)備與管道;2005年01期

4 張建偉;焦麗;王婷;;撞擊流反應(yīng)器內(nèi)壓力波動(dòng)信號(hào)的間歇性分析[J];石油化工高等學(xué)校學(xué)報(bào);2006年02期

5 張建偉;焦麗;;撞擊流反應(yīng)器壓力波動(dòng)的多尺度多分形特征分析[J];化工學(xué)報(bào);2006年07期

6 包傳平;陳斌;伍沅;潭濤;于緒平;劉碧;;撞擊流反應(yīng)器中攪拌特性研究[J];醫(yī)藥工程設(shè)計(jì);2007年03期

7 徐永通;唐惠慶;葉樹(shù)峰;蔡漳平;謝裕生;陳運(yùn)法;;撞擊流反應(yīng)器內(nèi)氣固兩相流動(dòng)的數(shù)值模擬[J];計(jì)算機(jī)與應(yīng)用化學(xué);2007年11期

8 鄒文敏;郭嘉;趙玉鳳;周玉新;伍沅;黃錕;楊雨佳;;立式撞擊流反應(yīng)器破碎酵母菌的研究[J];化學(xué)與生物工程;2009年10期

9 楊俠;羅燕;郭嘉;張捷;吳艷陽(yáng);;立式循環(huán)撞擊流反應(yīng)器三維流場(chǎng)的數(shù)值模擬[J];化工機(jī)械;2011年01期

10 張濤;吳艷陽(yáng);楊清;李良;;立式撞擊流反應(yīng)器中槳葉優(yōu)化設(shè)計(jì)[J];武漢工程大學(xué)學(xué)報(bào);2011年05期

相關(guān)會(huì)議論文 前2條

1 紀(jì)利俊;朱家文;武斌;陳葵;;撞擊流反應(yīng)器的宏觀混合特性[A];上海市化學(xué)化工學(xué)會(huì)2005年度學(xué)術(shù)年會(huì)論文摘要集[C];2005年

2 張建偉;玄書鵬;;浸沒(méi)循環(huán)撞擊流反應(yīng)器壓力波動(dòng)信號(hào)的Hilbert-Huang譜分析[A];第三屆全國(guó)化學(xué)工程與生物化工年會(huì)論文摘要集(上)[C];2006年

相關(guān)重要報(bào)紙文章 前2條

1 周玉新;無(wú)旋立式循環(huán)撞擊流反應(yīng)器面世[N];中國(guó)化工報(bào);2009年

2 曉春;無(wú)旋立式循環(huán)撞擊流反應(yīng)器在武漢工程大學(xué)面世[N];中國(guó)建材報(bào);2009年

相關(guān)博士學(xué)位論文 前2條

1 屠功毅;平面撞擊流反應(yīng)器流動(dòng)模式、混合機(jī)理及過(guò)程強(qiáng)化研究[D];華東理工大學(xué);2015年

2 李福寶;液體連續(xù)相撞擊流反應(yīng)器流場(chǎng)及其測(cè)量系統(tǒng)研究[D];東北大學(xué);2008年

相關(guān)碩士學(xué)位論文 前10條

1 劉海洲;撞擊流反應(yīng)器中化學(xué)反應(yīng)動(dòng)力學(xué)探索[D];武漢工程大學(xué);2011年

2 爨璋瑜;磁場(chǎng)條件下撞擊流反應(yīng)器內(nèi)氣固兩相流場(chǎng)耦合特性的研究[D];長(zhǎng)沙理工大學(xué);2012年

3 郭釗;液體連續(xù)相撞擊流反應(yīng)器中宏觀分散特性研究[D];武漢工程大學(xué);2014年

4 李曉蓉;新型外循環(huán)撞擊流反應(yīng)器混合特性研究[D];浙江工業(yè)大學(xué);2012年

5 于永久;高速撞擊流反應(yīng)器內(nèi)流動(dòng)特性的實(shí)驗(yàn)研究和數(shù)值模擬[D];北京化工大學(xué);2014年

6 李盛龍;撞擊流反應(yīng)器用于醇解法合成碳酸乙烯酯的工藝研究[D];武漢工程大學(xué);2014年

7 佘啟明;外循環(huán)撞擊流反應(yīng)器混合特性研究[D];浙江工業(yè)大學(xué);2009年

8 黃天浩;毛細(xì)撞擊流反應(yīng)器內(nèi)流體流動(dòng)與混合性能的CFD模擬[D];北京化工大學(xué);2013年

9 田亮亮;Ni-Co-O復(fù)合材料的制備及其超級(jí)電容性能的研究[D];北京化工大學(xué);2014年

10 張聯(lián)節(jié);撞擊流反應(yīng)器萃取電鍍廢水中的Cr~(6+)[D];四川大學(xué);2007年



本文編號(hào):1601104

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/huagong/1601104.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶6ae96***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com