大規(guī)模液氫泄漏擴(kuò)散的數(shù)值模擬與影響因素分析
本文關(guān)鍵詞: 液氫 泄漏 數(shù)值模擬 參數(shù)分析 出處:《浙江大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:氫作為一種重要的清潔能源,在化工、清潔能源以及航天推進(jìn)等諸多領(lǐng)域得到了廣泛的應(yīng)用。對(duì)于氫的大規(guī)模儲(chǔ)存、運(yùn)輸和應(yīng)用,以低溫液氫的形態(tài)比能量密度較低的常溫氣氫更為經(jīng)濟(jì)可行,有望得到快速發(fā)展。然而,一旦儲(chǔ)存的液氫發(fā)生泄漏,可能會(huì)在周圍地面形成低溫液池,而快速蒸發(fā)形成的氫氣會(huì)發(fā)生積聚而形成易爆混合氣體,這對(duì)周圍人群和環(huán)境構(gòu)成巨大的潛在威脅,特別像在作為航天推進(jìn)劑使用時(shí)的大規(guī)模液氫儲(chǔ)罐,其后果尤為嚴(yán)重。就大規(guī)模液氫的泄漏擴(kuò)散過(guò)程開(kāi)展數(shù)值模擬研究,對(duì)于掌握大規(guī)模液氫的泄漏擴(kuò)散機(jī)制、.制定應(yīng)急預(yù)案、劃定緊急疏散區(qū)域、評(píng)估事故危害后果等都有非常重要的現(xiàn)實(shí)意義。本文在綜合分析國(guó)內(nèi)外相關(guān)研究成果的基礎(chǔ)上,建立了基于CFD軟件FLUENT的大規(guī)模液氫泄漏擴(kuò)散過(guò)程的數(shù)值模型。由于風(fēng)對(duì)于氫氣在大氣中的漂移和擴(kuò)散有著重要影響,有必要對(duì)液氫泄漏源附近的風(fēng)場(chǎng)先進(jìn)行模擬與分析。因此,相關(guān)模擬研究分成兩個(gè)階段進(jìn)行,第一階段是對(duì)大氣邊界層內(nèi)的風(fēng)場(chǎng)進(jìn)行穩(wěn)態(tài)的數(shù)值模擬,得到大空間范圍內(nèi)風(fēng)場(chǎng)的模擬數(shù)據(jù),第二階段則利用第一階段的數(shù)值模擬結(jié)果作為初始條件,對(duì)大規(guī)模液氫的泄漏過(guò)程進(jìn)行非穩(wěn)態(tài)的數(shù)值模擬。在風(fēng)場(chǎng)模型的建立過(guò)程中,通過(guò)分析風(fēng)的基本特性和脈動(dòng)風(fēng)的主要屬性,確定平均風(fēng)剖面的數(shù)學(xué)表達(dá)形式以及風(fēng)的湍流參數(shù),并利用用戶自定義程序?qū)︼L(fēng)的參數(shù)進(jìn)行定義。在確定模型的計(jì)算流域并對(duì)計(jì)算流域進(jìn)行網(wǎng)格劃分之后,選擇Realizablek-ε模型作為風(fēng)場(chǎng)的湍流模型,對(duì)大空間范圍內(nèi)的風(fēng)場(chǎng)進(jìn)行了模擬。以風(fēng)場(chǎng)的模擬結(jié)果作為初始條件,繼而進(jìn)行大規(guī)模液氫泄漏和擴(kuò)散過(guò)程的數(shù)值模擬。采用Mixture模型作為多相流模型,結(jié)合實(shí)驗(yàn)中的地面情況,按照砂石的物理性質(zhì)確定下表面為恒溫的地面條件,對(duì)液氫的泄漏和擴(kuò)散過(guò)程進(jìn)行非穩(wěn)態(tài)模擬。通過(guò)與NASA的實(shí)驗(yàn)結(jié)果之間的對(duì)比,對(duì)模型的準(zhǔn)確性進(jìn)行驗(yàn)證,模擬結(jié)果對(duì)氫氣擴(kuò)散的動(dòng)態(tài)變化過(guò)程進(jìn)行形象的展示。基于已經(jīng)構(gòu)建的大規(guī)模液氫泄漏擴(kuò)散模型,著重對(duì)風(fēng)溫、風(fēng)速、地面溫度、地面粗糙度、液氫泄漏速率、泄漏出口的空化率等六個(gè)因素的改變對(duì)于大規(guī)模液氫泄漏擴(kuò)散行為的影響進(jìn)行分析。本文的研究結(jié)果對(duì)于探究建立更精確的大規(guī)模液氫泛溢后續(xù)行為特征的計(jì)算模型,以及建立大規(guī)模液氫泄漏擴(kuò)散的后續(xù)補(bǔ)救和防護(hù)措施具有指導(dǎo)意義。
[Abstract]:Hydrogen, as an important clean energy, has been widely used in many fields, such as chemical industry, clean energy and space propulsion. The form of cryogenic liquid hydrogen is more economical and feasible than that of atmospheric hydrogen with lower energy density, and it is expected to develop rapidly. However, once the stored liquid hydrogen leaks, a cryogenic liquid tank may be formed on the surrounding ground. Hydrogen, which is rapidly evaporating, accumulates and forms explosive mixtures, posing a huge potential threat to the population and the environment, especially in large-scale liquid hydrogen storage tanks used as space propellant. The consequences are especially serious. A numerical simulation study on the leakage and diffusion process of large-scale liquid hydrogen is carried out. In order to master the mechanism of leakage and diffusion of large-scale liquid hydrogen, to formulate emergency plans and delineate emergency evacuation areas, It is of great practical significance to evaluate the consequences of accidents. Based on the comprehensive analysis of relevant research results at home and abroad, A numerical model of large-scale liquid hydrogen leakage diffusion process based on CFD software FLUENT is established. Since wind has an important effect on the drift and diffusion of hydrogen in the atmosphere, it is necessary to simulate and analyze the wind field near the liquid hydrogen leakage source. The related simulation research is divided into two stages. The first stage is the steady numerical simulation of the wind field in the atmospheric boundary layer, and the simulation data of the wind field in a large space range are obtained. In the second stage, the numerical simulation results of the first stage are used as the initial conditions to simulate the large-scale liquid hydrogen leakage process. By analyzing the basic characteristics of the wind and the main properties of the pulsating wind, the mathematical expression of the mean wind profile and the turbulence parameters of the wind are determined. The parameters of wind are defined by user-defined program. After determining the calculated watershed of the model and meshing the calculated watershed, the realizablek- 蔚 model is chosen as the turbulence model of wind field. The wind field in large space is simulated. The simulation results of wind field are taken as the initial condition, and then the numerical simulation of large-scale liquid hydrogen leakage and diffusion process is carried out. The Mixture model is used as the multiphase flow model, and the ground condition in the experiment is combined. According to the physical properties of sand and gravel, the unsteady state simulation of liquid hydrogen leakage and diffusion is carried out under the condition that the lower surface is at constant temperature. The veracity of the model is verified by comparing with the experimental results of NASA. The simulation results show the dynamic process of hydrogen diffusion. Based on the large scale liquid hydrogen leakage diffusion model, we focus on wind temperature, wind speed, ground temperature, ground roughness, liquid hydrogen leakage rate. The influence of six factors, such as cavitation rate of leakage outlet, on the behavior of large-scale liquid hydrogen leakage and diffusion is analyzed. The results of this paper are helpful to establish a more accurate computational model for the characteristics of the subsequent behavior of large-scale liquid hydrogen spills. And the establishment of a large-scale liquid hydrogen leakage and diffusion of follow-up remedial and protective measures have guiding significance.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TQ116.27
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孫永康;;燃料電池汽車加氫站設(shè)計(jì)規(guī)范安全距離的分析研究[J];上海煤氣;2016年02期
2 王占林;葛紹嶺;;液氫輸送管路絕熱性能試驗(yàn)技術(shù)[J];低溫工程;2014年04期
3 陳亮;梁國(guó)柱;鄧新宇;胡煒;;貯箱內(nèi)低溫推進(jìn)劑汽化過(guò)程的CFD數(shù)值仿真[J];北京航空航天大學(xué)學(xué)報(bào);2013年02期
4 高會(huì)旺;顧明;王仁磊;薛宇歡;;北黃海海域大氣湍流強(qiáng)度特征及風(fēng)速標(biāo)準(zhǔn)差相似性分析[J];中國(guó)海洋大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年04期
5 許蕾;羅會(huì)信;;基于ANSYS ICEM CFD和CFX數(shù)值仿真技術(shù)[J];機(jī)械工程師;2008年12期
6 王贊社;顧兆林;馮詩(shī)愚;邱劍;;低溫推進(jìn)劑貯箱增壓過(guò)程的傳熱傳質(zhì)數(shù)學(xué)模擬[J];低溫工程;2007年06期
7 翟建華;計(jì)算流體力學(xué)(CFD)的通用軟件[J];河北科技大學(xué)學(xué)報(bào);2005年02期
8 張曉潔,殷志祥;電視塔脈動(dòng)風(fēng)荷載模擬研究[J];工程建設(shè)與設(shè)計(jì);2004年09期
9 汪叢軍,黃本才,張昕,徐曉明,林高;越南國(guó)家體育場(chǎng)屋蓋平均風(fēng)壓及風(fēng)環(huán)境影響數(shù)值模擬[J];空間結(jié)構(gòu);2004年02期
10 龐加斌,葛耀君,陸燁;大氣邊界層湍流積分尺度的分析方法[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2002年05期
,本文編號(hào):1500365
本文鏈接:http://sikaile.net/kejilunwen/huagong/1500365.html