海洋工程小尺度物體水動(dòng)力數(shù)值計(jì)算方法研究
[Abstract]:The isolated pile, the jacket platform, the submarine pipeline and the like are the ubiquitous structures in the ocean engineering, and the ratio of the transverse dimension D to the wavelength L when it is surrounded by the sea wave is less than 0.2, which is generally referred to as a small-scale structure. Water flow and wave are the main two kinds of external load in ocean engineering, and the interaction of water flow and wave and small-scale structures of ocean engineering has been the focus of people's research, and is one of the main problems that have not been solved well in the ocean engineering. A very important and new method of computational fluid dynamics is introduced into the fluid mechanics by a high-performance computer, which results in the "the third method" of fluid dynamics and the computational fluid dynamics. With high-performance electronic computer, it is possible to overcome the shortcomings of theoretical analysis and experimental research, to deepen the understanding of the law of fluid movement and to improve the ability to solve the practical problems of the project. The computational fluid dynamics numerical simulation can help to understand the fluid mechanics problem, provide guidance for the experiment and provide reference for the design, thus saving manpower, material resources and time, giving detailed and complete data, Flammable and other real conditions and the ideal conditions that can only be achieved in the experiment. In this paper, the hydrodynamic problem of small-scale objects in ocean engineering is selected as the research content under the precondition of considering the viscosity, turbulence and free liquid level flow of the fluid, and the numerical calculation model of the combination of the immersion boundary method and the fluid volume method is selected for numerical calculation. The numerical expression, the solution and the method validation of the two methods of the immersion boundary method and the fluid volume method are respectively given. In this paper, a method for calculating the numerical value of an applied force source term is proposed in the immersion boundary method. In this paper, the advantages and disadvantages of the method of continuous force method and discrete force method in the immersion boundary method are given, and the calculation step and the discrete force method are used to solve the force source term directly on the flow field node near the object surface, and the force source term is not solved by means of interpolation and extrapolation. In this paper, the method of discrete force method is used for numerical calculation. In this paper, the process of establishing the numerical model of the immersion boundary method is given in detail. The two-step projection method is used to solve the control equation by means of a two-step projection method. Finally, the numerical solution of the numerical model of the immersion boundary method is given. In this paper, the numerical model is verified by the numerical calculation of the flow around the fixed cylinder and the flow of the rotating cylinder, and the numerical results are compared with the experimental and numerical results of the others, and the results are good. So that the established numerical calculation model is correct and feasible. In this paper, the interface reconstruction method of the VOF and the basic idea for the interface capture are discussed in detail, and the VOF equation is established. The time steps selected in the numerical calculation must meet certain requirements. In order to maintain the stability of the numerical calculation, the three limiting conditions are given in this chapter. In order to test the reliability of the numerical model, the numerical verification of the turbulent dynamic problem of the complex free surface is taken as an example, and the problem of fluid sloshing and the laminar flow of the dam-break flow during the forced motion of the two-dimensional rectangular liquid tank are mainly verified. A numerical calculation model based on the immersion boundary method (IBM) and the fluid volume method (VOF) is established. The numerical calculation model of the established immersion boundary method (IBM) and the fluid volume method (VOF) is used for numerical verification, which is mainly verified by two numerical examples of a rectangular object through a trapezoidal object and an isolated wave through a linear periodic wave, The numerical results of this paper are compared with the existing results to prove that the numerical model established in this paper is correct and reliable, and the interaction between the wave and the structure can be well solved. the numerical calculation of the near-wall cylinder under the action of the wave is then carried out by using the established numerical model, the model can simulate the flow of the near-wall cylinder under the action of the wave, and compared with the model which can only simulate the action of the steady flow and the structure at present, The model solves the numerical simulation problem of the wave action process of the near-wall cylinder, and provides a basis for further studying the hydrodynamic characteristics of the near-wall cylinder under the action of wave. The vortex shedding mode of the flow around the cylindrical wall under the action of wave is the "P+S", which is in line with the experimental results. A three-dimensional numerical wave water tank model is developed based on the relaxation wave-making method, which is suitable for solving the wave action problem. The model uses open source numerical calculation software, OpenFoam, to develop a new solver by using an existing solver, inter, of OpenFoam, which can effectively realize the process of wave-making, propagation and wave-elimination of the numerical wave water tank. And the numerical water tank can successfully solve the problem of vertical cylindrical wave climbing simulation. Two different wave parameters are used to study the effect of wave-steep parameters on the wave-climbing effect around the column and its load. Compared with the potential flow model, the viscous flow model adopted in this paper can capture the secondary peak in the experiment. The calculation shows that the numerical flume established in this paper can be used for the calculation of the climbing problem of the vertical cylindrical wave.
【學(xué)位授予單位】:中國(guó)海洋大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:P75;P731.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;《海洋工程》2003(第21卷),第1~4期,總目錄[J];海洋工程;2003年04期
2 李潤(rùn)培,吳有生;海洋工程國(guó)家重點(diǎn)實(shí)驗(yàn)室[J];中國(guó)基礎(chǔ)科學(xué);2004年02期
3 ;《海洋工程》2004(第22卷),第1~4期,總目錄[J];海洋工程;2004年04期
4 ;《海洋工程》2007(第25卷),第1~4期,總目錄[J];海洋工程;2007年04期
5 ;2010年中國(guó)國(guó)際海洋工程發(fā)展論壇將于9月在上海舉行[J];中國(guó)海洋平臺(tái);2010年04期
6 ;《海洋工程》2010(第28卷),第1~4期,總目錄[J];海洋工程;2010年04期
7 陸萍;;海洋工程專業(yè)建設(shè)的可行性研究[J];黑龍江科技信息;2010年36期
8 八哥;;從探索到深造,從近海到深洋——漫談海洋工程的發(fā)展[J];海洋世界;2012年04期
9 嵇春艷;李良碧;;“海洋工程與技術(shù)”專業(yè)卓越工程師培養(yǎng)研究[J];船海工程;2012年06期
10 陳向榮;海洋工程系科研進(jìn)展情況[J];山東海洋學(xué)院學(xué)報(bào);1984年01期
相關(guān)會(huì)議論文 前10條
1 陶靜;;海洋工程發(fā)展前景不可低估[A];救撈專業(yè)委員會(huì)2005年學(xué)術(shù)交流會(huì)論文集[C];2005年
2 王小寧;;船舶及海洋工程對(duì)新材料的需求[A];中國(guó)造船工程學(xué)會(huì)論文集[C];2012年
3 趙秀花;;淺談海洋工程的投資管理[A];2013年中國(guó)海洋工程技術(shù)年會(huì)論文集[C];2013年
4 唐石青;;海洋工程電站集成技術(shù)及關(guān)鍵設(shè)備發(fā)展與研究[A];第五屆長(zhǎng)三角地區(qū)船舶工業(yè)發(fā)展論壇論文集[C];2009年
5 ;中國(guó)船舶焊切技術(shù)暨新船型及海洋工程工藝發(fā)展高峰論壇[A];中國(guó)船舶焊切技術(shù)暨新船型及海洋工程工藝發(fā)展高峰論壇論文集[C];2010年
6 孟凡生;;海洋工程項(xiàng)目管理中數(shù)模系統(tǒng)的建立及控制[A];2008年度海洋工程學(xué)術(shù)會(huì)議論文集[C];2008年
7 亢峻星;;自主創(chuàng)新發(fā)展我國(guó)的海洋工程事業(yè)——從勘探三號(hào)到3000米深水半潛式鉆井平臺(tái)[A];中國(guó)石油和石化工程研究會(huì)第九屆會(huì)員代表大會(huì)論文集[C];2008年
8 亢峻星;;只有自主創(chuàng)新,海洋工程才能真正做強(qiáng)[A];第七屆長(zhǎng)三角地區(qū)船舶工業(yè)發(fā)展論壇論文集[C];2011年
9 ;第五屆中國(guó)船舶及海洋工程用鋼發(fā)展論壇議程(擬)[A];第五屆中國(guó)船舶及海洋工程用鋼發(fā)展論壇;2013船舶及海洋工程甲板艙室機(jī)械技術(shù)發(fā)展論壇論文集[C];2013年
10 郭慶;饒擁軍;王偉;管長(zhǎng)青;;海洋工程營(yíng)運(yùn)船舶系統(tǒng)的費(fèi)用-效益分析[A];2009年度海洋工程學(xué)術(shù)會(huì)議論文集(下冊(cè))[C];2009年
相關(guān)重要報(bào)紙文章 前10條
1 馮米玲;海洋工程專項(xiàng)執(zhí)法行動(dòng)取得階段性成果[N];中國(guó)海洋報(bào);2007年
2 宋炳義;山東省實(shí)施海洋工程項(xiàng)目全過(guò)程監(jiān)管制度[N];中國(guó)海洋報(bào);2009年
3 記者 金江山;海洋工程內(nèi)外市場(chǎng)全面開(kāi)花[N];中國(guó)石油報(bào);2013年
4 鴻漢;江蘇發(fā)展海洋工程為玻鋼產(chǎn)業(yè)拓市場(chǎng)[N];中國(guó)建材報(bào);2013年
5 記者 裴道彰 蔡木子;我省將培育1—2個(gè)國(guó)際知名海洋工程品牌[N];長(zhǎng)江日?qǐng)?bào);2013年
6 青島日?qǐng)?bào)、青報(bào)網(wǎng)記者;青島海洋工程與技術(shù)聯(lián)合研究孵化中心落戶高新區(qū)[N];青島日?qǐng)?bào);2014年
7 甘言;韓國(guó)吃定海洋工程[N];中國(guó)船舶報(bào);2006年
8 余興光;專家座談海洋工程條例(二)[N];中國(guó)海洋報(bào);2006年
9 ;專家座談海洋工程條例(三)[N];中國(guó)海洋報(bào);2006年
10 記者 胡曉峰;發(fā)展海洋工程 上海厚積薄發(fā)[N];中國(guó)船舶報(bào);2007年
相關(guān)博士學(xué)位論文 前1條
1 唐鵬;海洋工程小尺度物體水動(dòng)力數(shù)值計(jì)算方法研究[D];中國(guó)海洋大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 呂亦e,
本文編號(hào):2485625
本文鏈接:http://sikaile.net/kejilunwen/haiyang/2485625.html