復(fù)雜類型海洋環(huán)境監(jiān)測數(shù)據(jù)的空間抽樣方法優(yōu)化
[Abstract]:The establishment of "space, sky, earth and bottom" three-dimensional monitoring network has laid a good foundation for marine data development and economic development, but is limited by soft / hard platforms such as marine data management, data analysis and data application. The phenomenon of "big data, little knowledge" in marine field is becoming more and more prominent. Therefore, how to quickly obtain information from massive marine data to provide services for intelligent decision-making is one of the current research hotspots. Sampling survey can quickly obtain effective key data from massive data, which is suitable for large-scale and large-scale data, and its cycle is short and the cost is low, which is the main way to solve the problem of big data's rapid application. At present, sampling methods still rely on the traditional probability sampling theory. Driven by multi-application requirements, how to extract effective and reliable data to generate effective information quickly is a challenge for existing sampling methods. Marine environmental monitoring data mainly refers to the marine environmental situation monitoring data obtained by means of buoys, survey ships and manual monitoring. The data characteristics and sampling problems can be summarized as follows: (1) oceanography. The monitoring data of marine environment are increasing and accelerating at an unprecedented rate, and the dynamic updates are frequent and multi-source. There are redundant problems in the spatial scale and time scale of the data. (2) Spatial correlation, the data has spatial attribute characteristics, the similarity of close data is high, which is easy to cause spatial association failure or sample overlap, and the sampling accuracy decreases; (3) Spatial heterogeneity, complex data coverage and uneven spatial distribution, which bring difficulties to data reuse and post-processing. Therefore, considering the characteristics of marine environment monitoring data, the design of optimal spatial sampling method to help the effective use of data is a problem worthy of study. In the design of sampling and estimation, excessive reduction of sampling cost will lead to errors in estimation accuracy and distortion of sampling results, while excessive sample size will increase data redundancy and thus increase cost. How to balance the sampling precision with the cost is the main theme of the design optimization spatial sampling method. The main contents of this paper are as follows: (1) analyzing the characteristics of marine environmental monitoring data, summarizing the challenges brought by multi-modal, high-dimensional and multi-attribute characteristics to sampling methods, and summarizing the research status of existing sampling methods. The problems arising from the application of these methods to marine environmental monitoring data are analyzed. (2) A systematic spatial sampling optimization method is proposed, considering the spatial correlation of data, the semi-variant function is introduced into the design of spatial sampling method. At the same time, the sampling point can reduce the redundancy of information under the premise of sampling accuracy. (3) considering the application demand of the marine environmental monitoring data, considering the multi-attribute relation of sampling object, the sampling point is not only uniformly distributed in the sea area, but also guaranteed to reduce the redundancy of information under the premise of sampling accuracy. By further expanding the method by calculating the weight of each attribute, a spatial sampling method which can meet the needs of multi-attribute comprehensive assessment of marine environment monitoring data is designed for more comprehensive use. More economical sampling estimation. (4) taking the spatial data of a certain sea area as the experimental object, through the analysis of variance, sampling ratio and trend surface, The spatial sampling method of complex marine environment monitoring data designed in this paper is compared with the traditional sampling method. The results show that the amount of data can be effectively reduced by using the step size calculated by this method. At the same time, to ensure a certain sampling accuracy, a better response to the overall characteristic trend.
【學(xué)位授予單位】:上海海洋大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:P717
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 安雅娟;魯珊珊;;環(huán)境監(jiān)測數(shù)據(jù)的審核措施[J];科技致富向?qū)?2013年23期
2 晁曉美;;解決環(huán)境監(jiān)測數(shù)據(jù)準(zhǔn)確性問題的建議[J];黑龍江科技信息;2011年14期
3 朱雅麗;張華;;談如何提高環(huán)境監(jiān)測數(shù)據(jù)的可靠性[J];遼寧師專學(xué)報(自然科學(xué)版);2011年04期
4 董志海;;環(huán)境監(jiān)測數(shù)據(jù)審核技巧及重點(diǎn)探討[J];科技風(fēng);2012年01期
5 江建輝;高軍林;徐麗紅;;環(huán)境監(jiān)測數(shù)據(jù)的可靠性分析探索[J];科技資訊;2012年20期
6 高春燕;;環(huán)境監(jiān)測數(shù)據(jù)審核淺析[J];云南科技管理;2012年06期
7 李秀芹;;環(huán)境監(jiān)測數(shù)據(jù)審核中發(fā)現(xiàn)的一些問題及改進(jìn)方法探討[J];科技風(fēng);2013年12期
8 宗巖;吳玉慧;;解決環(huán)境監(jiān)測數(shù)據(jù)準(zhǔn)確性問題的建議[J];科技致富向?qū)?2011年11期
9 楊馳宇;環(huán)境監(jiān)測數(shù)據(jù)的審核研究[J];吉林師范大學(xué)學(xué)報(自然科學(xué)版);2004年02期
10 汪曉丹;;淺論環(huán)境監(jiān)測數(shù)據(jù)的一級審核[J];大眾科技;2012年12期
相關(guān)會議論文 前6條
1 廖宏興;廖云峰;;論環(huán)境監(jiān)測數(shù)據(jù)與報告審核[A];2010中國環(huán)境科學(xué)學(xué)會學(xué)術(shù)年會論文集(第二卷)[C];2010年
2 徐姬;;環(huán)境監(jiān)測數(shù)據(jù)在環(huán)境執(zhí)法中證據(jù)效力的探討[A];廣西環(huán)境科學(xué)學(xué)會2002—2003年度學(xué)術(shù)論文集[C];2003年
3 王美俠;;關(guān)于環(huán)境監(jiān)測數(shù)據(jù)達(dá)到“五性”的分析[A];中國環(huán)境科學(xué)學(xué)會2006年學(xué)術(shù)年會優(yōu)秀論文集(下卷)[C];2006年
4 盧霞明;羅彬;;淺談環(huán)境監(jiān)測數(shù)據(jù)審核[A];四川省第十次環(huán)境監(jiān)測學(xué)術(shù)交流會論文集[C];2005年
5 婁濤;呂鸝;;加強(qiáng)環(huán)境監(jiān)測數(shù)據(jù)質(zhì)量管理措施探討[A];2013中國環(huán)境科學(xué)學(xué)會學(xué)術(shù)年會論文集(第四卷)[C];2013年
6 葉文學(xué);劉一鳴;王裘倫;;GMS空間環(huán)境監(jiān)測數(shù)據(jù)接收站[A];中國空間科學(xué)學(xué)會空間探測專業(yè)委員會第十次學(xué)術(shù)會議論文集[C];1997年
相關(guān)重要報紙文章 前10條
1 記者 李先宏、通訊員 勾漢斌、郭夢宇;武漢環(huán)境監(jiān)測數(shù)據(jù)獲35國認(rèn)可[N];湖北日報;2006年
2 陜西省環(huán)境監(jiān)測中心站 黃國全;如何保證監(jiān)測數(shù)據(jù)準(zhǔn)確性?[N];中國環(huán)境報;2011年
3 桓聲;山東:環(huán)境監(jiān)測數(shù)據(jù)將作為執(zhí)法依據(jù)[N];中國改革報;2008年
4 馬軍 陶冠峰;海洋環(huán)境監(jiān)測數(shù)據(jù)遠(yuǎn)程編報系統(tǒng)升級[N];中國海洋報;2010年
5 穆桑桑;環(huán)境監(jiān)測數(shù)據(jù)屢屢造假的背后……[N];中國經(jīng)濟(jì)導(dǎo)報;2014年
6 王煒邋季芳;環(huán)境監(jiān)測數(shù)據(jù)是可靠的[N];人民日報;2008年
7 記者 段麗茜;PM2.5:不同高度差別不大 PM10:越近地面濃度越高[N];河北日報;2014年
8 本報記者 陳巍巍;東方通助推智能環(huán)保[N];計(jì)算機(jī)世界;2013年
9 任曉明 齊偉;“一級天”數(shù)超過去年全年[N];太原日報;2012年
10 本報記者 孫長巖;全省144個空氣站實(shí)行“轉(zhuǎn)讓—經(jīng)營”模式[N];聯(lián)合日報;2012年
相關(guān)博士學(xué)位論文 前1條
1 徐向軍;基于環(huán)境監(jiān)測數(shù)據(jù)的源項(xiàng)估算技術(shù)研究[D];太原理工大學(xué);2012年
相關(guān)碩士學(xué)位論文 前5條
1 施黎莉;復(fù)雜類型海洋環(huán)境監(jiān)測數(shù)據(jù)的空間抽樣方法優(yōu)化[D];上海海洋大學(xué);2016年
2 黃野;環(huán)境監(jiān)測數(shù)據(jù)管理系統(tǒng)開發(fā)與實(shí)現(xiàn)[D];電子科技大學(xué);2013年
3 朱華清;環(huán)境監(jiān)測數(shù)據(jù)自動統(tǒng)計(jì)處理模型的研究與實(shí)現(xiàn)[D];景德鎮(zhèn)陶瓷學(xué)院;2007年
4 廖雪梅;文物遺址環(huán)境監(jiān)測數(shù)據(jù)服務(wù)系統(tǒng)設(shè)計(jì)與開發(fā)[D];浙江大學(xué);2008年
5 朱銳;南極長城灣海域生態(tài)環(huán)境監(jiān)測數(shù)據(jù)的實(shí)時傳輸[D];國家海洋技術(shù)中心;2010年
,本文編號:2472897
本文鏈接:http://sikaile.net/kejilunwen/haiyang/2472897.html