基于BP神經(jīng)網(wǎng)絡(luò)的海洋監(jiān)測(cè)數(shù)據(jù)等級(jí)劃分
發(fā)布時(shí)間:2018-11-07 21:12
【摘要】:數(shù)據(jù)的分類是數(shù)據(jù)處理和應(yīng)用的重要環(huán)節(jié)和前提。在海洋領(lǐng)域中,海洋數(shù)據(jù)呈現(xiàn)多元、多類等的復(fù)雜多樣性,給數(shù)據(jù)的分類帶來(lái)一定的技術(shù)挑戰(zhàn)。主要針對(duì)海洋數(shù)據(jù)分類難這一問(wèn)題,首先利用BP神經(jīng)網(wǎng)絡(luò)技術(shù)對(duì)海洋環(huán)境監(jiān)測(cè)數(shù)據(jù)進(jìn)行分類,且通過(guò)對(duì)獲取的海洋環(huán)境監(jiān)測(cè)數(shù)據(jù)進(jìn)行分類預(yù)測(cè),最后,實(shí)驗(yàn)驗(yàn)證了海洋環(huán)境監(jiān)測(cè)數(shù)據(jù)分類方法的正確性和可行性,給海洋監(jiān)測(cè)數(shù)據(jù)根據(jù)秘密等級(jí)進(jìn)行數(shù)據(jù)分類提供了支持。
[Abstract]:Data classification is an important link and prerequisite for data processing and application. In the field of ocean, ocean data presents complex diversity, such as multivariate, multi-class, etc., which brings some technical challenges to the classification of data. Aiming at the difficulty of marine data classification, this paper first uses BP neural network technology to classify marine environmental monitoring data, and then classifies and forecasts the acquired marine environmental monitoring data. The experimental results verify the correctness and feasibility of the classification method of marine environmental monitoring data, and provide support for the classification of marine monitoring data according to the secret level.
【作者單位】: 上海海洋大學(xué)信息學(xué)院;三江學(xué)院土木工程學(xué)院;
【基金】:上海市科委重點(diǎn)支撐項(xiàng)目(12510502000) 華東師范大學(xué)河口海岸學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室開(kāi)發(fā)基金(2008DFB90240)
【分類號(hào)】:P714
本文編號(hào):2317582
[Abstract]:Data classification is an important link and prerequisite for data processing and application. In the field of ocean, ocean data presents complex diversity, such as multivariate, multi-class, etc., which brings some technical challenges to the classification of data. Aiming at the difficulty of marine data classification, this paper first uses BP neural network technology to classify marine environmental monitoring data, and then classifies and forecasts the acquired marine environmental monitoring data. The experimental results verify the correctness and feasibility of the classification method of marine environmental monitoring data, and provide support for the classification of marine monitoring data according to the secret level.
【作者單位】: 上海海洋大學(xué)信息學(xué)院;三江學(xué)院土木工程學(xué)院;
【基金】:上海市科委重點(diǎn)支撐項(xiàng)目(12510502000) 華東師范大學(xué)河口海岸學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室開(kāi)發(fā)基金(2008DFB90240)
【分類號(hào)】:P714
【相似文獻(xiàn)】
相關(guān)期刊論文 前3條
1 陳維;顧杰;李雯婷;秦欣;;基于BP神經(jīng)網(wǎng)絡(luò)的長(zhǎng)江口北支河槽容積分析[J];海洋科學(xué);2011年01期
2 朱智慧;;BP神經(jīng)網(wǎng)絡(luò)方法在海浪數(shù)值預(yù)報(bào)中的釋用研究[J];大氣科學(xué)研究與應(yīng)用;2011年01期
3 ;[J];;年期
相關(guān)會(huì)議論文 前1條
1 朱智慧;;BP神經(jīng)網(wǎng)絡(luò)方法在海浪數(shù)值預(yù)報(bào)中的釋用研究[A];第八屆長(zhǎng)三角氣象科技發(fā)展論壇論文集[C];2011年
,本文編號(hào):2317582
本文鏈接:http://sikaile.net/kejilunwen/haiyang/2317582.html
最近更新
教材專著