天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 海洋學(xué)論文 >

基于浮標(biāo)觀測(cè)資料及再分析數(shù)據(jù)集的北歐海海氣熱通量特征研究

發(fā)布時(shí)間:2018-08-14 17:57
【摘要】:作為北大西洋暖流進(jìn)入極區(qū)的唯一通道,北歐海是北半球亞極區(qū)海洋徑向熱量輸送的最重要通道,在輸運(yùn)過程中海洋內(nèi)部的熱量以感熱和潛熱的方式源源不斷向大氣中釋放,成為驅(qū)動(dòng)北半球高緯度大氣環(huán)流的重要一環(huán)。研究表明北歐海海域是北極濤動(dòng)和北大西洋濤動(dòng)的核心區(qū)域,海氣湍流熱交換過程一方面影響北歐海大氣下界面的能量收支;另一方面海氣湍流熱交換的變化還會(huì)導(dǎo)致局地海表面的冷卻,從而引起上層海洋熱含量的異常變化,進(jìn)而對(duì)北大西洋深層水的形成存在間接影響。北歐海海氣熱量輸送的變化還與格陵蘭海氣旋活動(dòng)存在密切關(guān)系,而格陵蘭海氣旋活動(dòng)的路徑和強(qiáng)度變化影響著北極大西洋扇區(qū)的液態(tài)水輸送和海冰變化。因此,研究北歐海海氣熱通量對(duì)于研究整個(gè)北半球大尺度大氣環(huán)流的變化有著重要貢獻(xiàn)。同時(shí),海氣界面湍流熱通量的變化對(duì)于海洋與大氣環(huán)流模式的驅(qū)動(dòng),海氣相互作用的研究,以及數(shù)值天氣預(yù)報(bào)模式的評(píng)估和評(píng)價(jià)等都有重要意義。對(duì)北歐海海氣界面熱通量的研究需要借助再分析資料,然而,現(xiàn)有的海氣通量數(shù)據(jù)集(包括衛(wèi)星遙感反演數(shù)據(jù)和再分析數(shù)據(jù))中的海氣通量場(chǎng)都存在著不確定性。造成偏差的主要原因一是塊體算法中對(duì)海表面粗糙度參量的估算不夠精確;二是計(jì)算熱通量所需的各海氣界面要素存在測(cè)量誤差。因此,充分利用浮標(biāo)現(xiàn)場(chǎng)觀測(cè)數(shù)據(jù),改進(jìn)海氣熱通量估算方法,以及對(duì)目前常用的相關(guān)數(shù)據(jù)產(chǎn)品進(jìn)行驗(yàn)證和比較評(píng)估,顯得十分迫切和重要。2012年我國(guó)首次在北歐海羅弗敦海盆(5°E,70°N)進(jìn)行了23天連續(xù)的現(xiàn)場(chǎng)浮標(biāo)觀測(cè),通過獲得的數(shù)據(jù),本文首先對(duì)獲得的資料進(jìn)行了分析和描述,并計(jì)算出海表湍流熱通量,對(duì)海表面要素和熱通量之間的關(guān)系以及觀測(cè)期間熱輸送的短期變化特征進(jìn)行了進(jìn)一步分析:海氣界面感熱通量為-5.21W/m~2~41.15W/m2,潛熱通量為-3.59W/m2~82.81W/m2,海洋向大氣為正,說明羅弗敦海盆夏季熱通量以海洋向大氣傳遞熱量為主。兩者都呈現(xiàn)升高趨勢(shì),潛熱通量平均是感熱通量的3.4倍。海氣溫差是北歐海羅弗敦海盆夏季影響感熱輸送的主導(dǎo)因素;在中低風(fēng)速狀態(tài)下,海氣濕度差是引起潛熱通量變化的主導(dǎo)因素。功率譜分析顯示感熱通量存在15.4天的主要周期,而潛熱通量存在15.4天及3天左右的高頻周期。其次,本文利用獲得的數(shù)據(jù)對(duì)四套再分析資料集(ERA-Interim、OAFlux、NCEP1及NCEP2)在高緯度海域的估算進(jìn)行了比較分析和評(píng)估:四類再分析數(shù)據(jù)集對(duì)海表面10m風(fēng)速、2m大氣溫度、2m空氣比濕的估算與實(shí)測(cè)值相關(guān)性良好,從統(tǒng)計(jì)特征來(lái)看ERA-Interim和OAFlux的數(shù)據(jù)在此海域夏季期間要優(yōu)于NCEP1和NCEP2.四類數(shù)據(jù)集和實(shí)測(cè)相差最大的是海表皮溫。ERA-Interim對(duì)海表高頻波動(dòng)的變化更敏感。造成感熱通量偏差的原因是對(duì)海表氣溫和皮溫不同程度的高估或低估。ERA-Interim對(duì)感熱的估算優(yōu)于其它三者。四者對(duì)潛熱的估算在潛熱值較大時(shí)誤差也增大,其中NCEP1和NCEP2相對(duì)ERA-Interim和OAFlux對(duì)實(shí)測(cè)數(shù)據(jù)有明顯的高估,這些誤差應(yīng)該是來(lái)自對(duì)海表風(fēng)速和海表比濕的估算偏差。OAFlux對(duì)潛熱的估算優(yōu)于其他三者。本文利用和實(shí)測(cè)數(shù)據(jù)吻合最好的ERA-Interim月均數(shù)據(jù)對(duì)北歐海的年內(nèi)季節(jié)變化和長(zhǎng)期時(shí)空變化特征進(jìn)行了分析。結(jié)果表明北歐海作為全球大洋少數(shù)強(qiáng)海氣耦合海域,感熱和潛熱釋放全年都大于0(海洋向大氣為正),三種熱通量都在冬季達(dá)到最大值,而夏季最小,年內(nèi)變化都呈單峰周期性變化。感熱不同的季節(jié)分布呈現(xiàn)明顯的緯向變化,潛熱季節(jié)變化則更多的呈現(xiàn)經(jīng)向變化。感熱年內(nèi)變化最大的是斯瓦爾巴島西側(cè)的暖流回流區(qū);潛熱變化最大的是西斯匹茲卑爾根流流經(jīng)海域和冰島西部、南部海域,潛熱波動(dòng)值僅為感熱的一半。對(duì)凈熱通量多年逐月距平場(chǎng)的EOF第一模態(tài)方差貢獻(xiàn)占48.25%,代表了北歐海距平值一致的空間變化,其中東格陵蘭寒流海域是正負(fù)異常變化最明顯的海域。時(shí)間序列年平均表明第一模態(tài)在逐漸由正異常轉(zhuǎn)為負(fù)異常,從側(cè)面也說明凈熱整體降低的趨勢(shì)。第二模態(tài)和第三模態(tài)貢獻(xiàn)率為12.5%和11.1%,空間分別呈現(xiàn)南北偶極子和東西蹺蹺板分布,其中第二模態(tài)有明顯的四年左右的周期,第三模態(tài)的時(shí)間序列和NAO指數(shù)則有0.6的正相關(guān),說明北大西洋濤動(dòng)帶來(lái)的氣壓變化對(duì)北歐海海氣熱輸送有不小的影響。利用SODA再分析資料的海水垂向溫度數(shù)據(jù)和ERA-Interim的氣壓數(shù)據(jù)對(duì)北歐海海氣凈熱通量與混合層深度、混合層溫度、海表氣旋活動(dòng)之間的關(guān)系進(jìn)行了初步探討,發(fā)現(xiàn)熱通量與混合層深度存在一個(gè)月的超前相關(guān),即海洋向大氣釋放(吸收)熱量一個(gè)月后混合層會(huì)變深(淺),相關(guān)性達(dá)0.9,其中暖流區(qū)相關(guān)性更好;熱通量與混合層溫度存在兩個(gè)月的超前相關(guān),即海洋向大氣釋放(吸收)熱量?jī)蓚(gè)月后混合層會(huì)變冷(暖),相關(guān)性達(dá)到-0.9,而空間分布較一致。北歐海熱通量與氣旋活動(dòng)指數(shù)在長(zhǎng)期變化上存在0.62的相關(guān)性,說明兩者關(guān)系密切,但氣旋活動(dòng)肯定也受到其他因素制約。
[Abstract]:As the only passage for the North Atlantic warm current to enter the polar region, the Nordic Sea is the most important passage for the radial heat transfer in the northern hemisphere's subpolar region. During the process of transport, the heat in the ocean is released into the atmosphere by sensible heat and latent heat, which is an important part of the atmospheric circulation in the northern hemisphere. Sea area is the core area of Arctic and North Atlantic Oscillation. On the one hand, the turbulent heat exchange process affects the energy budget at the lower atmosphere interface of the Nordic Sea; on the other hand, the change of turbulent heat exchange between sea and air will lead to the cooling of the local sea surface, thus causing the abnormal change of the heat content in the upper ocean, and then to the deep North Atlantic. There is an indirect effect on the formation of water. The change of sea-air heat transfer in the Nordic Sea is also closely related to the cyclone activity in the Greenland Sea. The path and intensity of the cyclone activity in the Greenland Sea affect the liquid water transport and sea ice change in the Arctic Atlantic sector. Therefore, the study of the sea-air heat flux in the Nordic Sea is of great significance to the study of the whole Northern Hemisphere. Meanwhile, the variation of turbulent heat flux at the air-sea interface is of great significance to the driving of ocean-atmosphere circulation models, the study of air-sea interaction, and the evaluation and evaluation of numerical weather prediction models. However, there are uncertainties in the current air-sea flux data sets (including satellite remote sensing inversion data and reanalysis data). One of the main reasons for the deviation is that the estimation of sea surface roughness parameters in the block algorithm is not accurate enough, and the other is that there are measurement errors in the air-sea interface elements needed to calculate the heat flux. Therefore, it is very urgent and important to make full use of the buoy field data to improve the estimation method of air-sea heat flux and to verify and compare the commonly used data products. In this paper, the data obtained are analyzed and described, and the turbulent heat flux on the sea surface is calculated. The relationship between sea surface elements and heat flux and the short-term variation characteristics of heat transfer during the observation period are further analyzed. The sensible heat flux at the sea-air interface is - 5.21W/m~2~41.15W/m 2, and the latent heat flux is - 3.59W/m~2~82.81W/m 2. The ocean-to-atmosphere heat flux is positive, indicating that the ocean-to-atmosphere heat flux is the main heat flux in the Lofton Basin in summer. Both of them show an upward trend, and the latent heat flux is 3.4 times of the sensible heat flux on average. Power spectrum analysis shows that sensible heat flux has a main period of 15.4 days, while latent heat flux has a high frequency period of 15.4 days and 3 days. The data of ERA-Interim and OAFlux are better than those of NCEP1 and NCEP2. The difference between ERA-Interim and NCEP2 is the largest. ERA-Interim estimates sensible heat better than the other three. Four estimates of latent heat also increase when the latent heat value is large. NCEP1 and NCEP2 overestimate the measured data compared with ERA-Interim and OAFlux. These errors should be attributed to the estimation bias of sea surface wind speed and specific humidity.OAFlux is superior to the other three methods in estimating latent heat.This paper analyses the seasonal and long-term spatial and temporal variations of the Nordic Sea using ERA-Interim monthly mean data with the best agreement with the measured data.The results show that the Nordic Sea is less of a global ocean. The sensible heat and latent heat release in several strong air-sea coupled waters are greater than 0 (the ocean is positive to the atmosphere) all year round, and the three heat fluxes reach the maximum in winter, while the summer is the smallest, and the annual variation is a single peak periodic change. The largest internal variation is in the warm current recirculation zone on the western side of Svalbard Island, while the greatest change in latent heat is in the west of Iceland and the western part of the western part of the West Spitsbergen Current. The latent heat fluctuation is only half of the sensible heat in the southern part of the sea. The annual average of time series shows that the first mode is gradually changing from positive to negative anomaly, and the overall decrease trend of net heat is also shown from the side. The contribution rates of the second mode and the third mode are 12.5% and 11.1%, respectively. The space shows the North-South dipole and the east-south dipole respectively. Western seesaw distribution, in which the second mode has an obvious period of about four years, the third mode time series and NAO index have a positive correlation of 0.6, indicating that the North Atlantic Ocean Oscillation brings about a change in atmospheric pressure in the Nordic Sea air-sea heat transfer has a small impact. The relationship between the air-sea net heat flux and mixing layer depth, mixing layer temperature and sea surface cyclone activity in Northern Europe is preliminarily discussed. It is found that there is a one-month advance correlation between the heat flux and mixing layer depth, that is, the mixing layer will deepen (shallow) after one month when the ocean releases (absorbs) heat to the atmosphere, and the correlation reaches 0.9, in which the warm current phase is formed. There is a two-month advance correlation between heat flux and mixing layer temperature, that is, the mixing layer will become cold (warm) two months after the ocean releases (absorbs) heat to the atmosphere, the correlation reaches - 0.9, and the spatial distribution is more consistent. Cyclonic activity is also restricted by other factors.
【學(xué)位授予單位】:上海海洋大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:P715.2;P732.6

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 楊新飛;管磊;;全球海氣界面潛熱通量產(chǎn)品對(duì)比研究[J];中國(guó)海洋大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年01期

2 趙進(jìn)平;Ken Drinkwater;;北歐海主要海盆海面熱通量的多年變化[J];中國(guó)海洋大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年10期

3 邵秋麗;趙進(jìn)平;;北歐海深層水的研究進(jìn)展[J];地球科學(xué)進(jìn)展;2014年01期

4 肖斌;喬方利;呂連港;;南黃海海氣熱通量觀測(cè)及其與OAflux數(shù)據(jù)集比較研究[J];海洋科學(xué)進(jìn)展;2013年01期

5 徐小慧;高志球;;利用船測(cè)近海層湍流熱通量資料驗(yàn)證OAFlux數(shù)據(jù)集[J];氣候與環(huán)境研究;2012年03期

6 張連新;管長(zhǎng)龍;黃健;;海氣熱通量算法的改進(jìn)及應(yīng)用[J];中國(guó)海洋大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年12期

7 黃艷松;宋金寶;范聰慧;;海氣通量渦相關(guān)法計(jì)算中的時(shí)間尺度分析[J];海洋科學(xué);2011年11期

8 何琰;趙進(jìn)平;;北歐海的鋒面分布特征及其季節(jié)變化[J];地球科學(xué)進(jìn)展;2011年10期

9 鄧小花;翟盤茂;袁春紅;;國(guó)外幾套再分析資料的對(duì)比與分析[J];氣象科技;2010年01期

10 褚健婷;陳錦年;許蘭英;;海-氣界面熱通量算法的研究及在中國(guó)近海的應(yīng)用[J];海洋與湖沼;2006年06期

相關(guān)博士學(xué)位論文 前1條

1 王曉宇;北歐海深層增暖和北極鋒面分叉的物理過程[D];中國(guó)海洋大學(xué);2015年

,

本文編號(hào):2183655

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/haiyang/2183655.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶ec285***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com