海洋物理化學(xué)多參數(shù)綜合監(jiān)測(cè)系統(tǒng)研究
本文選題:自動(dòng)監(jiān)測(cè)技術(shù) + 遠(yuǎn)程無(wú)線通信 ; 參考:《杭州電子科技大學(xué)》2014年碩士論文
【摘要】:海洋自古就蘊(yùn)含著豐富的漁業(yè)、礦產(chǎn)、能源等各類資源,開(kāi)發(fā)海洋不僅是緩解陸地矛盾、補(bǔ)充陸地需求的必要手段,也是科學(xué)研究的必然結(jié)果。認(rèn)識(shí)和開(kāi)發(fā)海洋的過(guò)程其實(shí)就是海洋監(jiān)測(cè)技術(shù)、海洋開(kāi)發(fā)技術(shù)及海洋通用技術(shù)等一系列海洋高新技術(shù)不斷更新發(fā)展的過(guò)程。其中海洋監(jiān)測(cè)技術(shù)是海洋通用技術(shù)應(yīng)用于實(shí)踐的必然,也是海洋開(kāi)發(fā)技術(shù)的基礎(chǔ)和保障。 傳統(tǒng)的海洋監(jiān)測(cè)技術(shù)依靠人工實(shí)地測(cè)量來(lái)獲取第一手的海洋數(shù)據(jù),亦或?qū)悠穾Щ貙?shí)驗(yàn)室再進(jìn)行分析,該方法已經(jīng)越來(lái)越難以滿足日益發(fā)展的海洋監(jiān)測(cè)技術(shù)的要求,由此而誕生的海洋自動(dòng)監(jiān)測(cè)技術(shù)是一項(xiàng)集機(jī)械、電子、通信、物理、化學(xué)、地質(zhì)等多領(lǐng)域研究為一體的綜合技術(shù),,依靠該技術(shù)可遠(yuǎn)程獲取海洋數(shù)據(jù),大大減少人力、物力、財(cái)力。 本研究從海洋自動(dòng)監(jiān)測(cè)技術(shù)的發(fā)展現(xiàn)狀出發(fā),以實(shí)際科研項(xiàng)目的需求為基礎(chǔ)。首先確定了本海洋監(jiān)測(cè)系統(tǒng)的監(jiān)測(cè)參數(shù)和相應(yīng)技術(shù)指標(biāo),其次以此為基礎(chǔ)設(shè)計(jì)了本海洋監(jiān)測(cè)系統(tǒng)的總體規(guī)劃方案,最后將總體方案根據(jù)功能詳細(xì)分解為多個(gè)獨(dú)立的子功能模塊。 根據(jù)立體化海洋監(jiān)測(cè)的總體設(shè)想,將自動(dòng)監(jiān)測(cè)平臺(tái)設(shè)計(jì)為漂浮式海面監(jiān)測(cè)和座底式海底監(jiān)測(cè)兩大部分。座底式海洋監(jiān)測(cè)平臺(tái)集成了多套商用數(shù)據(jù)采集設(shè)備,漂浮式海面監(jiān)測(cè)平臺(tái)上搭載了太陽(yáng)能供電、遠(yuǎn)程通信系統(tǒng)、漂浮模塊、GPS定位、自制的物理化學(xué)數(shù)據(jù)采集器等功能模塊。其中座底式海洋監(jiān)測(cè)平臺(tái)上的各設(shè)備均采用自容方式工作,而漂浮式海面監(jiān)測(cè)平臺(tái)上設(shè)備通過(guò)移動(dòng)GPRS網(wǎng)絡(luò)以遠(yuǎn)程無(wú)線通信方式進(jìn)行實(shí)時(shí)監(jiān)控。 本研究對(duì)自制的物理化學(xué)數(shù)據(jù)采集系統(tǒng)進(jìn)行了重點(diǎn)設(shè)計(jì),包括該系統(tǒng)的硬件電路設(shè)計(jì)、軟件程序設(shè)計(jì)及該數(shù)據(jù)采集系統(tǒng)的機(jī)械封裝結(jié)構(gòu)設(shè)計(jì)。硬件電路設(shè)計(jì)內(nèi)容包括系統(tǒng)的低功耗設(shè)計(jì)、電源轉(zhuǎn)換、模擬信號(hào)獲取及處理、模數(shù)轉(zhuǎn)換、數(shù)據(jù)存儲(chǔ)、實(shí)時(shí)時(shí)鐘及通信電路等。軟件程序設(shè)計(jì)包括數(shù)據(jù)采集系統(tǒng)的上、下位機(jī)程序設(shè)計(jì)和上下位機(jī)間通信協(xié)議設(shè)計(jì),其中上位機(jī)軟件包括了實(shí)時(shí)顯示控制程序和遠(yuǎn)程控制中心程序。機(jī)械封裝結(jié)構(gòu)設(shè)計(jì)包括殼體設(shè)計(jì)和封頭設(shè)計(jì)兩部分。 該系統(tǒng)在完成裝配后還進(jìn)行了多項(xiàng)實(shí)驗(yàn)室試驗(yàn),并根據(jù)試驗(yàn)反饋進(jìn)行改進(jìn),最后將調(diào)試完畢的整套系統(tǒng)布放于實(shí)際海域進(jìn)行為期一個(gè)月的海試試驗(yàn)。試驗(yàn)數(shù)據(jù)真實(shí),具備一定參考價(jià)值,一系列試驗(yàn)表明系統(tǒng)運(yùn)行情況良好,基本完成預(yù)期目標(biāo)。
[Abstract]:Since ancient times, the ocean contains abundant fishery, mineral resources, energy and other resources. Developing the ocean is not only the necessary means to alleviate the land contradiction and supplement the land demand, but also the inevitable result of scientific research. The process of understanding and developing the ocean is actually the process of continuous renewal and development of marine high and new technologies, such as ocean monitoring technology, ocean development technology and ocean general technology. The marine monitoring technology is the necessity of the application of general marine technology in practice, and also the foundation and guarantee of marine development technology. Traditional marine monitoring techniques rely on artificial field measurements to obtain first-hand marine data or bring samples back to the laboratory for analysis. This method has become increasingly difficult to meet the requirements of the increasingly developed marine monitoring technology. The marine automatic monitoring technology is a comprehensive technology that integrates mechanical, electronic, communication, physical, chemical, geological and other fields of research. Depending on this technology, ocean data can be obtained remotely, and manpower and material resources can be greatly reduced. Financial resources Based on the development of marine automatic monitoring technology, the research is based on the demand of actual scientific research projects. First, the monitoring parameters and corresponding technical indexes of the marine monitoring system are determined, then the overall planning scheme of the marine monitoring system is designed based on the above. Finally, the overall scheme is decomposed into several independent sub-function modules according to the function. According to the overall idea of three-dimensional ocean monitoring, the automatic monitoring platform is designed as floating sea level monitoring and bottom monitoring. The platform integrates many sets of commercial data acquisition equipment, and the floating sea level monitoring platform is equipped with solar power supply, remote communication system, floating module GPS positioning, self-made physical and chemical data collector and other functional modules. The equipment on the bottom platform works in self-contained mode, while the equipment on the floating sea surface monitoring platform is monitored by remote wireless communication through the mobile GPRS network. This study focuses on the design of the physical and chemical data acquisition system, including the hardware circuit design, software program design and mechanical packaging structure design of the data acquisition system. The hardware circuit design includes low power design, power conversion, analog signal acquisition and processing, analog-to-digital conversion, data storage, real-time clock and communication circuit. The software program design includes the upper and lower computer program design and the communication protocol design between the upper and lower computers. The upper computer software includes the real-time display control program and the remote control center program. Mechanical package structure design includes two parts: shell design and head design. After completing the assembly, several laboratory tests were carried out and improved according to the feedback of the test. Finally, the whole system was placed in the actual sea area for a one-month sea trial. The test data are true and have certain reference value. A series of tests show that the system is running well and the expected goal is basically achieved.
【學(xué)位授予單位】:杭州電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:P714.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李萬(wàn)河;;太陽(yáng)能電池的種類[J];電子工業(yè)專用設(shè)備;2008年04期
2 陳萌萌;邵貝貝;;單片機(jī)系統(tǒng)的低功耗設(shè)計(jì)策略[J];單片機(jī)與嵌入式系統(tǒng)應(yīng)用;2006年03期
3 趙志宏;李小珉;陳冬;;基于C8051F系列單片機(jī)的低功耗設(shè)計(jì)[J];單片機(jī)與嵌入式系統(tǒng)應(yīng)用;2006年08期
4 張莉;;國(guó)外海洋開(kāi)發(fā)態(tài)勢(shì)及對(duì)中國(guó)的啟示[J];國(guó)際技術(shù)經(jīng)濟(jì)研究;2006年04期
5 寇順利;包海鷹;;鋼制壓力容器設(shè)計(jì)中的焊接接頭系數(shù)[J];電焊機(jī);2010年06期
6 毛偉云;陳明;丁力;;ARM嵌入式處理器在智能儀器中的應(yīng)用[J];計(jì)測(cè)技術(shù);2007年01期
7 劉超;徐博;;我國(guó)海洋礦產(chǎn)資源開(kāi)發(fā)對(duì)漁業(yè)的影響及對(duì)策[J];湖南農(nóng)業(yè)科學(xué);2009年10期
8 許林之;關(guān)于加強(qiáng)海洋監(jiān)測(cè)工作的幾點(diǎn)建議[J];海洋信息;2000年01期
9 莫杰;當(dāng)代海洋高技術(shù)發(fā)展概況與趨勢(shì)[J];海洋地質(zhì)與第四紀(jì)地質(zhì);1996年03期
10 閻季惠,李景光;全球海洋觀測(cè)系統(tǒng)及我們的對(duì)策初探[J];海洋技術(shù);1999年03期
相關(guān)博士學(xué)位論文 前1條
1 羅漢江;海洋監(jiān)測(cè)傳感器網(wǎng)絡(luò)關(guān)鍵技術(shù)研究[D];中國(guó)海洋大學(xué);2010年
本文編號(hào):2014902
本文鏈接:http://sikaile.net/kejilunwen/haiyang/2014902.html