基于海底觀測網的拉曼光譜系統(tǒng)測控電路的設計與實現(xiàn)
發(fā)布時間:2018-05-19 17:28
本文選題:Mobus-Rtu + MSP430; 參考:《中國海洋大學》2014年碩士論文
【摘要】:隨著技術發(fā)展和社會進步,,人類對海洋的研究不斷深入,相應的也對海洋探測技術提出了更高的要求。海底觀測網技術相比較傳統(tǒng)的深海探測方式,具有實時性、長期性等優(yōu)勢。通過預先鋪設的深海電纜,海底觀測網將岸基控制臺與分散于海底科研現(xiàn)場的儀器設備整合成網絡,實現(xiàn)了科研數(shù)據的實時分析、處理與發(fā)布。極大地促進了深?茖W研究的發(fā)展。 基于海底觀測網的激光拉曼光譜系統(tǒng)是集成在深海觀測網上的節(jié)點設備之一,通過分析現(xiàn)場獲得的激光光譜數(shù)據實現(xiàn)對海底化學環(huán)境(例如SO4 2-離子濃度)的監(jiān)測。整個系統(tǒng)包括岸基控制部分和水下探測部分(包括一個控制艙和兩個激光器測量艙),本文涉及的測控電路設計屬于水下探測部分,目的是保證系統(tǒng)在水下長期穩(wěn)定運行。在實際設計中,本文將根據深海拉曼光譜探測系統(tǒng)的工作需求和觀測網的相關電氣規(guī)范,對拉曼光譜探測系統(tǒng)水下部分的測控電路進行總體設計和功能實現(xiàn)。在具體內容中,電路的硬件部分包括相關電路的設計和調試,開發(fā)環(huán)境為PROTEL;軟件部分包括單片機系統(tǒng)控制程序的編寫(基于C語言),開發(fā)環(huán)境為IAR Embeded Workbench。 測控電路根據功能可以分為用供電管理、單片機控制和內部通訊網絡三部分。供電規(guī)范部分由一系列DC/DC模塊和專門的電力保護模塊組成,確保系統(tǒng)的用電屬性符合海底觀測網的電氣規(guī)范。為了保持供電的可靠性,系統(tǒng)中絕大部分設備儀器都采用了雙電源冗余配置。當發(fā)生電壓電流沖擊、漏電等用電異常現(xiàn)象時,供電管理部分的電路能夠及時響應并加以抑制。以MSP430為核心的單片機主要負責對水下系統(tǒng)中的底層硬件進行控制,包括采集水下艙內的各種環(huán)境或者對設備的電氣參數(shù)隔離檢測,并根據指令控制系統(tǒng)內的電子元件或者特定設備。系統(tǒng)內部網絡的設計目的是為實現(xiàn)水下三個艙室(一個控制艙和兩個激光器測量艙)間的通訊,本文根據系統(tǒng)實際的軟硬件基礎,確定了內部網絡應用層的通訊規(guī)范,并定義了相關的控制器設備地址、功能代碼和寄存器映射體系,為后續(xù)的軟件設計奠定了基礎。 測控電路的軟件部分包括對系統(tǒng)內控制器的編程,拉曼光譜探測系統(tǒng)包括兩種控制器,一種是MSP430單片機,另一種是PC104工控機。本文主要討論MSP430單片機控制程序的編寫,包括對基于Modbus的RS-485總線通訊功能的軟件實現(xiàn),以及與各種傳感器芯片(SHT11、GY-80等)的通訊功能的軟件實現(xiàn)。 論文最后對整個系統(tǒng)軟硬件件綜合測試。岸基控制程序控制探測艙PC104完成光譜采集,得到光譜數(shù)據;MSP430單片機完成QE65000光譜儀和PC104等設備電源的通斷、采集部分環(huán)境參數(shù)(溫濕度和姿態(tài))。測試表明,測控電路在軟硬件方面基本實現(xiàn)了系統(tǒng)的控制要求。
[Abstract]:With the development of technology and the progress of society, the study of ocean has been deepened, and the higher requirement of ocean exploration technology has been put forward. Compared with the traditional deep-sea detection technology, the submarine observation network has the advantages of real-time, long-term and so on. Through the pre-laid deep-sea cable, the submarine observation network integrates the shore-based console and the instruments and equipments scattered in the submarine research site into a network, and realizes the real-time analysis, processing and release of the scientific data. It greatly promoted the development of deep-sea scientific research. The laser Raman spectrum system based on the submarine observation network is one of the node equipments integrated in the deep-sea observation network. By analyzing the laser spectral data obtained in the field, the laser Raman spectrum system can be used to realize the implementation of the seabed chemical environment (such as SO4). Monitoring of 2-ion concentration. The whole system includes shore-based control part and underwater detection part (including one control module and two laser measuring cabins). The design of the measurement and control circuit in this paper belongs to the underwater detection part, the purpose of which is to ensure the system to operate steadily under water for a long time. In the actual design, according to the work requirements of the deep sea Raman spectrum detection system and the relevant electrical specifications of the observation network, the overall design and function realization of the measurement and control circuit of the underwater part of the Raman spectrum detection system are carried out. In the specific content, the hardware part of the circuit includes the design and debugging of the related circuit, the development environment is protel, and the software part includes the programming of the control program of the single-chip microcomputer system (based on C language, the development environment is IAR Embeded Workbench.). The measuring and controlling circuit can be divided into three parts according to its function: power supply management, single chip microcomputer control and internal communication network. The power supply specification is composed of a series of DC/DC modules and special power protection modules to ensure that the electrical properties of the system conform to the electrical specifications of the submarine observation network. In order to maintain the reliability of power supply, most of the equipment and instruments in the system use dual power redundancy configuration. When the voltage and current impulse and leakage are abnormal, the power supply management circuit can respond and suppress in time. The single chip microcomputer with MSP430 as the core is mainly responsible for controlling the underlying hardware of the underwater system, including collecting various environments in the underwater cabin or isolating the electrical parameters of the equipment. And according to the command control system electronic components or specific equipment. In order to realize the communication between three underwater cabins (one control chamber and two laser measuring modules), the system internal network is designed. According to the actual software and hardware of the system, the communication specification of the application layer of the internal network is determined in this paper. The related controller device address, function code and register mapping system are defined, which lays the foundation for the subsequent software design. The software of the measurement and control circuit includes the programming of the controller in the system. The Raman spectrum detection system includes two kinds of controllers, one is the MSP430 single chip microcomputer, the other is the PC104 industrial control computer. This paper mainly discusses the programming of MSP430 single chip computer control program, including the software realization of RS-485 bus communication function based on Modbus, and the software realization of communication function with various sensor chips, such as SHT11GY-80 etc. Finally, the software and hardware of the whole system are tested. The shore based control program controls the detection module PC104 to complete the spectrum acquisition. The spectral data can be obtained by MSP430 single chip microcomputer to complete the switching off of the power supply of the QE65000 spectrometer and the PC104 equipment, and to collect some environmental parameters (temperature, humidity and attitude). The test shows that the hardware and software of the measurement and control circuit basically meet the control requirements of the system.
【學位授予單位】:中國海洋大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:P715.5
【參考文獻】
相關期刊論文 前8條
1 田野;王振南;侯華明;翟曉薇;慈興華;鄭榮兒;;基于激光誘導擊穿光譜的巖屑識別方法研究[J];光譜學與光譜分析;2012年08期
2 劉超;王紅霞;魏巍;王希晨;;海底觀測網監(jiān)控系統(tǒng)的設計實現(xiàn)[J];光通信技術;2014年01期
3 程凱;侯華明;李德平;郭金家;趙廣濤;鄭榮兒;;深海原位激光拉曼光譜系統(tǒng)釋樣設計與海試[J];哈爾濱工程大學學報;2011年08期
4 亓夫軍;王彬;魏旭可;;外轉子直流無刷電機用于粘度測量研究[J];科技風;2011年06期
5 呂斌;李正寶;杜立彬;;海底觀測網接駁盒不間斷電源管理系統(tǒng)設計[J];海洋技術;2013年04期
6 薛志剛;金波;李德駿;楊燦軍;;海底觀測網絡的監(jiān)測信息系統(tǒng)研究[J];輕工機械;2010年04期
7 吳邦春;彭曉彤;周懷陽;蕭蘊詩;何斌;;基于海底觀測網的深;瘜W監(jiān)測系統(tǒng)的設計[J];儀器儀表學報;2011年05期
8 蘇安明;程維明;;基于MSP430單片機的無線溫濕度檢測系統(tǒng)[J];自動化與儀器儀表;2014年01期
相關博士學位論文 前1條
1 盧漢良;海底觀測網絡水下接駁盒原型系統(tǒng)技術研究[D];浙江大學;2011年
本文編號:1911002
本文鏈接:http://sikaile.net/kejilunwen/haiyang/1911002.html
最近更新
教材專著