基于HY-2衛(wèi)星數(shù)據(jù)海流反演算法研究
發(fā)布時(shí)間:2018-05-02 10:22
本文選題:HY-2 + 網(wǎng)格化 ; 參考:《國(guó)家海洋環(huán)境預(yù)報(bào)中心》2015年碩士論文
【摘要】:海流是海水因熱輻射、蒸發(fā)、降水、冷縮等而形成密度不同的水團(tuán),再加上風(fēng)應(yīng)力、地轉(zhuǎn)偏向力、引潮力等作用而形成的大規(guī)模相對(duì)穩(wěn)定的非周期性海水流動(dòng),它是海水的普遍運(yùn)動(dòng)形式之一,使世界大洋得以保持其各種水文和化學(xué)要素的長(zhǎng)期相對(duì)穩(wěn)定。獲得海表流速的方式有隨船海流計(jì)、浮標(biāo)和通過(guò)衛(wèi)星數(shù)據(jù)反演得到海流。衛(wèi)星數(shù)據(jù)具有時(shí)間序列長(zhǎng),空間跨度大的特點(diǎn),通過(guò)衛(wèi)星數(shù)據(jù)反演得到海流不僅成本低,實(shí)際操作性高,而且覆蓋范圍廣時(shí)間長(zhǎng),對(duì)于研究大尺度全球長(zhǎng)時(shí)間序列的海流特征來(lái)說(shuō),數(shù)據(jù)更加豐富。海洋二號(hào)(HY-2)衛(wèi)星是中國(guó)海洋動(dòng)力環(huán)境探測(cè)系列衛(wèi)星的首顆衛(wèi)星,實(shí)現(xiàn)全天時(shí)、全天候?qū)C骘L(fēng)場(chǎng)、海面高度場(chǎng)、浪場(chǎng)、海洋重力場(chǎng)、大洋環(huán)流和海表溫度場(chǎng)等重要海洋參數(shù)的綜合監(jiān)測(cè),其上裝載了高度計(jì)、輻射計(jì)和散射計(jì),能夠提供反演海表流速的所需主要數(shù)據(jù)。因此,實(shí)現(xiàn)基于海洋二號(hào)衛(wèi)星反演海流的技術(shù)流程具有重要的意義。該項(xiàng)工作主要包括:1. 對(duì)反演海表流速所需的原始數(shù)據(jù)進(jìn)行預(yù)處理。對(duì)原始衛(wèi)星高度計(jì)數(shù)據(jù)按照一定的篩選條件選出質(zhì)量可靠的點(diǎn),按照距離加權(quán)法進(jìn)行網(wǎng)格化,得到1°×1°的海面動(dòng)力高度場(chǎng)。由海洋二號(hào)衛(wèi)星散射計(jì)數(shù)據(jù)產(chǎn)品經(jīng)過(guò)插值得到1°×10海面風(fēng)場(chǎng)和AMSR-2得到1°×1。海表溫度場(chǎng)。2. 實(shí)現(xiàn)兩種算法反演海流產(chǎn)品:經(jīng)驗(yàn)?zāi)P退惴ê蛣?dòng)力模型算法。經(jīng)驗(yàn)?zāi)P退惴ǖ暮诵乃枷刖褪菍⒑1砹魉俜譃閮蓚(gè)部分:地轉(zhuǎn)流和Ekman流。地轉(zhuǎn)流是由經(jīng)典的地轉(zhuǎn)平衡方程得到,Ekman流由Ekman漂流理論實(shí)現(xiàn)。對(duì)于赤道處的海表流速計(jì)算采用f平面轉(zhuǎn)換的方法。動(dòng)力模型算法的核心是不僅考慮海面動(dòng)力高度和風(fēng)場(chǎng),還加入了海表溫度梯度場(chǎng)。對(duì)于赤道處的處理采用正交多項(xiàng)式擬合的數(shù)學(xué)方法。3. 將由經(jīng)驗(yàn)?zāi)P退惴ê蛣?dòng)力模型算法得到的基于海洋二號(hào)衛(wèi)星數(shù)據(jù)的反演海流結(jié)果和OSCAR海流數(shù)據(jù)產(chǎn)品進(jìn)行對(duì)比驗(yàn)證。結(jié)果表明兩種算法結(jié)果在近赤道處較差,中高緯地區(qū)較好。兩種算法標(biāo)準(zhǔn)差在近赤道處達(dá)到0.30m/s,在中高緯地區(qū)為0.05m/s到0.10m/s。第一種算法的標(biāo)準(zhǔn)差比第二種算法標(biāo)準(zhǔn)差較大。
[Abstract]:A current is a mass of water with different densities formed by heat radiation, evaporation, precipitation, condensation, and so on, coupled with wind stress, geostrophic deflection, tidal force, and so on, resulting in a large, relatively stable, aperiodic flow of seawater. It is one of the general movement forms of seawater, which enables the world ocean to maintain its hydrological and chemical elements relatively stable for a long time. The sea surface velocity can be obtained by current meter, buoy and inversion of satellite data. Satellite data has the characteristics of long time series and large space span. The inversion of satellite data not only has the advantages of low cost, high practical operation, but also wide coverage and long time. For studying the characteristics of large scale global long time series, the data are more abundant. The HY-2) satellite is the first satellite in a series of China's marine dynamic environmental exploration satellites. It has all-weather and all-weather responses to the wind field, sea height field, wave field, ocean gravity field, and so on. Integrated monitoring of important ocean parameters such as ocean circulation and sea surface temperature field, which is loaded with altimeters, radiometers and scattermeters, can provide the main data needed for inversion of sea surface velocity. Therefore, it is of great significance to realize the technical flow of ocean current inversion based on Ocean 2 satellite. The work consisted mainly of: 1. The raw data needed for inversion of sea surface velocity are preprocessed. According to the screening conditions of the original satellite altimeter data, the reliable points are selected, and the dynamic sea surface height field of 1 擄脳 1 擄is obtained by the distance weighting method. The sea surface wind field of 1 擄脳 10 and 1 擄脳 1 by AMSR-2 are obtained by interpolation from the data of Ocean 2 Satellite scatterometer. Sea surface temperature field. Two algorithms are implemented to retrieve current products: empirical model algorithm and dynamic model algorithm. The core idea of empirical model algorithm is to divide sea surface velocity into two parts: geostrophic current and Ekman current. The geostrophic flow is derived from the classical geostrophic equilibrium equation and the Ekman flow is realized by Ekman drift theory. For the calculation of sea surface velocity at the equator, the method of f plane conversion is used. The core of the dynamic model algorithm is not only considering the sea surface dynamic height and wind field, but also adding the sea surface temperature gradient field. The orthogonal polynomial fitting method is used to deal with the equator. The results obtained from empirical model algorithm and dynamic model algorithm based on ocean 2 satellite data are compared with OSCAR current data products. The results show that the results of the two algorithms are poor near the equator and are better in the middle and high latitudes. The standard deviations of the two algorithms are 0.30 m / s near the equator and 0.10 m / s / s at the middle and high latitudes. The standard deviation of the first algorithm is larger than that of the second.
【學(xué)位授予單位】:國(guó)家海洋環(huán)境預(yù)報(bào)中心
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:P715.6;P731.21
【參考文獻(xiàn)】
相關(guān)期刊論文 前2條
1 李博;莫軍;;海流對(duì)水下運(yùn)載器航行安全的影響評(píng)估[J];艦船科學(xué)技術(shù);2012年08期
2 呂宜男;;海流和風(fēng)暴潮數(shù)值模擬及軟件問(wèn)世[J];航海;1990年02期
相關(guān)碩士學(xué)位論文 前1條
1 奚萌;基于最優(yōu)插值算法的紅外和微波遙感海表溫度數(shù)據(jù)融合[D];國(guó)家海洋環(huán)境預(yù)報(bào)研究中心;2011年
,本文編號(hào):1833492
本文鏈接:http://sikaile.net/kejilunwen/haiyang/1833492.html
最近更新
教材專著