波浪驅(qū)動(dòng)滑翔器工作機(jī)理分析與水下滑翔體的結(jié)構(gòu)設(shè)計(jì)
本文選題:波浪驅(qū)動(dòng)滑翔器 + NACA水翼。 參考:《浙江大學(xué)》2015年碩士論文
【摘要】:波浪驅(qū)動(dòng)滑翔器是一種新型的水面移動(dòng)觀測(cè)平臺(tái),它由通過(guò)臍帶纜連接的水面浮體和水下滑翔體兩部分組成,利用海面以下水質(zhì)點(diǎn)運(yùn)動(dòng)半徑較小的特點(diǎn),通過(guò)臍帶纜將浮體采集到的波浪起伏運(yùn)動(dòng)傳遞到水下滑翔體,水下滑翔體上的水翼在有攻角的情況下運(yùn)動(dòng),產(chǎn)生前進(jìn)的動(dòng)力,從而將海面的波浪起伏直接轉(zhuǎn)換為前進(jìn)的推力,實(shí)現(xiàn)長(zhǎng)期的出海工作而不需要額外提供能源,通過(guò)搭載不同的傳感器,可以實(shí)現(xiàn)各種觀測(cè)功能,在資源探測(cè)、環(huán)境監(jiān)測(cè)、軍事偵察等各方面都有較為重大的意義。本文工作如下:(a)本在現(xiàn)有研究成果的基礎(chǔ)上,本文分析了波浪驅(qū)動(dòng)滑翔器的工作機(jī)理,分別對(duì)平板翼型和非平板翼型進(jìn)行各過(guò)程受力分析,給出水翼翻轉(zhuǎn)的依據(jù),并給出基于升力及阻力系數(shù)的水翼分力計(jì)算方法。(b)通過(guò)流體仿真軟件ANSYS CFX進(jìn)行了對(duì)平板翼型和NACA四位數(shù)字翼型進(jìn)行仿真對(duì)比,通過(guò)不同速度下二者的性能對(duì)比進(jìn)行選擇;對(duì)NACA0012翼型分別進(jìn)行了多速度、多攻角仿真,并給出小攻角范圍內(nèi),水翼的升力及阻力系數(shù)與攻角的數(shù)值關(guān)系;通過(guò)MATLAB對(duì)水翼進(jìn)行數(shù)值仿真,并求出平均推力;通過(guò)多水翼陣列仿真分析了水翼間距對(duì)水動(dòng)力性能的影響,并進(jìn)行選取確定。(c)在理論分析的基礎(chǔ)上,提出水面浮體和水下滑翔體總體的設(shè)計(jì)要求,并對(duì)水下滑翔體進(jìn)行結(jié)構(gòu)設(shè)計(jì),包括水翼設(shè)計(jì)、主框架設(shè)計(jì)、整流罩設(shè)計(jì)以及附加組件連接設(shè)計(jì)等部分。(d)對(duì)整體結(jié)構(gòu)進(jìn)行穩(wěn)定性分析,確保其具有良好的運(yùn)行穩(wěn)定性及抗擾動(dòng)能力;通過(guò)對(duì)波長(zhǎng)較小時(shí)浮體的理論運(yùn)動(dòng)軌跡和實(shí)際運(yùn)動(dòng)軌跡的對(duì)比,對(duì)浮體最大長(zhǎng)度提出了設(shè)計(jì)要求。(e)對(duì)水下滑翔體模型進(jìn)行下水試驗(yàn)。在驗(yàn)證理論模型的同時(shí),分析實(shí)驗(yàn)數(shù)據(jù)與理論數(shù)據(jù)差異產(chǎn)生的原因,提出影響推力的因素,對(duì)結(jié)構(gòu)設(shè)計(jì)的改進(jìn)優(yōu)化提供參考。
[Abstract]:The wave driven glider is a new platform for water surface movement observation. It is composed of two parts of water surface floating body and underwater glider connected by umbilical cord cable. Using the characteristics of small motion radius of the water quality point below the sea surface, the wave motion collected by the floating body is transmitted to the underwater glider by the umbilical cord cable, and the water on the underwater glider. In the case of an angle of attack, the wing moves and produces the driving force, which converts the undulating wave of the sea directly into the forward thrust, realizes the long run out of the sea without the need of additional energy. By carrying different sensors, all kinds of observation functions can be realized, and the various aspects of the source detection, environmental monitoring, military reconnaissance and other aspects are compared. The work of this paper is as follows: (a) on the basis of the existing research results, this paper analyzes the working mechanism of the wave driven glider, analyzes the force analysis of the plate airfoil and the non plate airfoil respectively, gives the basis of the hydrofoil flip, and gives the calculation method of the hydrofoil based on the lift and the drag coefficient. (b) The over fluid simulation software ANSYS CFX simulates the flat wing and the NACA four bit digital airfoil, and chooses the performance comparison of the two people at different speeds; the multi velocity and multiple angle of attack simulation of the NACA0012 airfoil are carried out respectively, and the numerical relation between the lift and the drag coefficient and the angle of attack is given within the small angle of attack. The numerical simulation of hydrofoil is carried out through MATLAB, and the average thrust is obtained. Through the simulation of the hydrofoil array, the influence of the hydrofoil spacing on the hydrodynamic performance is analyzed and selected. (c) based on the theoretical analysis, the design requirements of the surface floating body and underwater glider are proposed, and the underwater glider is designed, including water. Wing design, main frame design, fairing design and additional component connection design. (d) the stability analysis of the whole structure is carried out to ensure good operation stability and disturbance resistance. The maximum length of the floating body is designed by comparing the theoretical movement track and the actual trajectory of the floating body of the smaller wavelength. (E) the underwater glider model is tested under water. At the same time, the reason of the difference between the experimental data and the theoretical data is analyzed. The factors affecting the thrust are put forward, and the reference for the improvement and optimization of the structural design is provided.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:P715.5;TP242
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 王春江;;阻燃、聚醚型聚氨酯熱塑彈性體在野外特種用途通信電纜中的應(yīng)用[J];電線電纜;2007年05期
2 張大雄;水翼船原理特點(diǎn)及其使用與維修[J];江蘇船舶;2000年03期
3 田寶強(qiáng);俞建成;張艾群;金文明;趙文濤;陳質(zhì)二;;波浪驅(qū)動(dòng)無(wú)人水面機(jī)器人運(yùn)動(dòng)效率分析[J];機(jī)器人;2014年01期
4 徐春鶯;陳家旺;鄭炳煥;;波浪驅(qū)動(dòng)的水面波力滑翔機(jī)研究現(xiàn)狀及應(yīng)用[J];海洋技術(shù)學(xué)報(bào);2014年02期
5 劉鵬;蘇玉民;劉煥興;廖煜雷;;串列異步拍動(dòng)翼推進(jìn)性能分析[J];上海交通大學(xué)學(xué)報(bào);2014年04期
6 胡丹梅;李佳;閆海津;;水平軸風(fēng)力機(jī)翼型動(dòng)態(tài)失速的數(shù)值模擬[J];中國(guó)電機(jī)工程學(xué)報(bào);2010年20期
相關(guān)博士學(xué)位論文 前1條
1 王延輝;水下滑翔器動(dòng)力學(xué)行為與魯棒控制策略研究[D];天津大學(xué);2007年
相關(guān)碩士學(xué)位論文 前1條
1 賈立娟;波浪動(dòng)力滑翔機(jī)雙體結(jié)構(gòu)工作機(jī)理與動(dòng)力學(xué)行為研究[D];國(guó)家海洋技術(shù)中心;2014年
,本文編號(hào):1788918
本文鏈接:http://sikaile.net/kejilunwen/haiyang/1788918.html