潛標(biāo)平臺(tái)運(yùn)動(dòng)及數(shù)據(jù)反演研究
本文選題:潛標(biāo) + 平臺(tái)運(yùn)動(dòng)。 參考:《中國(guó)海洋大學(xué)》2015年博士論文
【摘要】:在南海這樣的深水區(qū),船載調(diào)查等常規(guī)海洋觀測(cè)方法難以得到大量連續(xù)的數(shù)據(jù),而定點(diǎn)潛標(biāo)觀測(cè)則解決了這一問(wèn)題。多個(gè)定點(diǎn)潛標(biāo)可以組成空間陣列,沿著每個(gè)潛標(biāo)的纜線又可以掛載多種海洋儀器,這兩種措施大大擴(kuò)展了潛標(biāo)觀測(cè)的水平和垂向范圍,使得潛標(biāo)在海洋觀測(cè)中得到越來(lái)越廣泛的應(yīng)用。隨著觀測(cè)和數(shù)據(jù)的迅速增加,以及應(yīng)用范圍的擴(kuò)展,潛標(biāo)數(shù)據(jù)質(zhì)量的好壞也越來(lái)越重要;同時(shí),潛標(biāo)運(yùn)動(dòng)、數(shù)據(jù)缺測(cè)等問(wèn)題對(duì)潛標(biāo)數(shù)據(jù)質(zhì)量的影響也變得更加突出和嚴(yán)重。因而及時(shí)進(jìn)行有效的數(shù)據(jù)質(zhì)量分析和誤差控制,將相關(guān)影響減到最低也就變得越來(lái)越必要。本文基于大量的南海潛標(biāo)觀測(cè)實(shí)例,通過(guò)方法的創(chuàng)新和多種數(shù)據(jù)的充分使用,對(duì)潛標(biāo)運(yùn)動(dòng)和數(shù)據(jù)缺測(cè)這兩類(lèi)影響潛標(biāo)數(shù)據(jù)質(zhì)量的問(wèn)題進(jìn)行了研究。錨定潛標(biāo)有一個(gè)顯著的特點(diǎn)就是它是一個(gè)運(yùn)動(dòng)的平臺(tái),除了固定的底部之外,潛標(biāo)各部分都隨著海水的流動(dòng)而運(yùn)動(dòng)。在垂直方向,通過(guò)壓力記錄,我們可以清楚看到潛標(biāo)的運(yùn)動(dòng)情況;在水平方向,雖然運(yùn)動(dòng)更加劇烈,但是由于相關(guān)研究的缺乏,我們還得不到準(zhǔn)確的運(yùn)動(dòng)距離和速度。為此,在充分利用潛標(biāo)上的測(cè)流儀器的姿態(tài)數(shù)據(jù)的基礎(chǔ)上,本文提出了一種能夠量化潛標(biāo)三維運(yùn)動(dòng)的簡(jiǎn)單易行的新方法,即在將潛標(biāo)分段之后,由儀器姿態(tài)確定每段線纜的傾斜方向,由壓力及潛標(biāo)布放參數(shù)確定其傾斜角度,自下而上積分,從而實(shí)現(xiàn)潛標(biāo)各部分的空間定位?臻g位置的時(shí)間導(dǎo)數(shù)即是潛標(biāo)的運(yùn)動(dòng)速度,原始流速加上該速度即是真實(shí)的海水流速。本文通過(guò)對(duì)海峽流、潮流、孤立波影響下的典型的潛標(biāo)案例的分析來(lái)研究潛標(biāo)運(yùn)動(dòng)的大小和影響。對(duì)于長(zhǎng)度為745米、3700米和2000米,偏降為270米、150米和20米的三個(gè)潛標(biāo),其最大運(yùn)動(dòng)速度分別達(dá)到6 cm s-1、7 cm s-1和15 cms-1。對(duì)于上層的強(qiáng)流來(lái)說(shuō),潛標(biāo)速度占比大約為10%,然而隨著深度的增加和流速的減弱,這一比例能達(dá)到20-60%?梢(jiàn),對(duì)于劇烈運(yùn)動(dòng)的潛標(biāo)來(lái)說(shuō),流速訂正很有必要。對(duì)于潮流等變化較緩慢的流場(chǎng)來(lái)說(shuō),劇烈運(yùn)動(dòng)的標(biāo)志就是大偏降:而對(duì)于孤立波等來(lái)說(shuō),即使是幾十米的小偏降也應(yīng)引起注意。本文研究揭示出潛標(biāo)的運(yùn)動(dòng)規(guī)律:潛標(biāo)在海流的帶動(dòng)下運(yùn)動(dòng),具有和流速結(jié)構(gòu)類(lèi)似的頻譜關(guān)系;某一頻率的潮流引起的潛標(biāo)運(yùn)動(dòng)軌跡是橢圓,流速和潛標(biāo)速度基本垂直,且潛標(biāo)運(yùn)動(dòng)在位相上領(lǐng)先90度,同樣大小的潮流所引起的潛標(biāo)運(yùn)動(dòng)速度與其周期成反比;斜壓流場(chǎng)和潛標(biāo)結(jié)構(gòu)不均等會(huì)打破理想關(guān)系,但實(shí)際潛標(biāo)運(yùn)動(dòng)一般被上層強(qiáng)流所主導(dǎo)。海洋是個(gè)復(fù)雜多變的環(huán)境場(chǎng),多種儀器組合成的潛標(biāo)系統(tǒng)長(zhǎng)期在其中工作,也就難免產(chǎn)生各種狀況,導(dǎo)致部分?jǐn)?shù)據(jù)異;蛉笔。因而,充分利用潛標(biāo)系統(tǒng)中的已有數(shù)據(jù),實(shí)現(xiàn)缺測(cè)數(shù)據(jù)的反演,也就十分難得和有用。上打ADCP的深度即可通過(guò)聲學(xué)回波信號(hào)反演得到。前人的相關(guān)研究都沒(méi)有考慮干擾,但在實(shí)際觀測(cè)中,各beam的聲學(xué)回波信號(hào)之間會(huì)有干擾,同時(shí)共振、電路等可能原因?qū)е碌钠娈愔狄矔?huì)污染聲信號(hào)。本文通過(guò)分析總結(jié)這些干擾的特點(diǎn)和規(guī)律,先消除這些影響之后再進(jìn)行擬合,得到更加準(zhǔn)確實(shí)用的反演深度。在深度缺測(cè)的情況下它是可靠的替代,在觀測(cè)深度有效的情況下它們可以相互印證并進(jìn)一步排除奇異值,因而深度反演大大增加了深度這一基礎(chǔ)數(shù)據(jù)的冗余度和安全性。使用溫度鏈實(shí)現(xiàn)海洋上層溫度的觀測(cè)是潛標(biāo)的一項(xiàng)重要應(yīng)用,但是受到強(qiáng)流導(dǎo)致的潛標(biāo)運(yùn)動(dòng)的影響,經(jīng)常出現(xiàn)頂部溫度的缺測(cè)。如何較準(zhǔn)確地實(shí)現(xiàn)缺測(cè)溫度的補(bǔ)償和反演,是一個(gè)有挑戰(zhàn)的新問(wèn)題,本文就此進(jìn)行了研究。理論上可以通過(guò)以下方法進(jìn)行溫度反演:通過(guò)ADCP回波得出的反演深度和觀測(cè)深度對(duì)比,再結(jié)合ADCP實(shí)測(cè)聲速就能得到ADCP到海表的實(shí)際平均聲速,從該聲速中去掉溫度鏈觀測(cè)即可得到頂層缺測(cè)部分的平均溫度值,該值作為控制條件,以SST和溫度鏈頂端觀測(cè)為溫度的上、下邊界條件,再結(jié)合缺測(cè)時(shí)段前后的溫躍層結(jié)構(gòu),即可實(shí)現(xiàn)缺測(cè)部分的溫度反演。
[Abstract]:In the deep water areas such as the South China Sea, it is difficult to get a large number of continuous data in the conventional ocean observation methods, such as shipboard investigation, and the fixed point submersible observation can solve this problem. The multiple fixed-point submersible marks can form a space array, and a variety of marine instruments can be mounted along the cable of each submersible. These two measures greatly extend the water of the submersible observation. The horizontal and vertical range make the submersible standard more and more widely used in ocean observation. With the rapid increase of the observation and data and the expansion of the application range, the quality of the submersible data is becoming more and more important. At the same time, the influence of the submersible motion and the data lack on the quality of the submersible data has become more and more prominent and serious. It is becoming more and more necessary to carry out effective data quality analysis and error control in time and reduce the relative influence to the lowest. Based on a large number of examples of South China Sea submersible observation, this paper studies the two kinds of problems affecting the quality of the submersible data through the innovation of the method and the full use of many kinds of data. There is a remarkable feature of anchoring potential that it is a motion platform. Apart from the fixed bottom, the submersible parts are moving along with the flow of the sea water. In the vertical direction, we can clearly see the motion of the submersible by the pressure record; in the horizontal direction, although the movement is more intense, but the related research is due. On the basis of taking full advantage of the attitude data of the current measuring instrument, a simple and easy method to quantify the three-dimensional motion of the submersible standard is proposed. The submersible standard distribution parameters determine its tilt angle and integrate from bottom to top to realize the spatial positioning of all parts of the submersible mark. The time derivative of the space position is the velocity of the submersible mark, and the original flow velocity plus the velocity is the real sea water velocity. The size and influence of the submersible motion are studied. For three submersible marks of 745 meters, 3700 meters and 2000 meters, 270 meters, 150 meters and 20 meters, the maximum velocity of the submersible is 6 cm s-1,7 cm S-1 and 15 cms-1., respectively, for the upper flow, the ratio of the submersible velocity is about 10%, however, with the increase of depth and the weakening of the velocity, this ratio is a ratio. As for the 20-60%. visible, the velocity correction is necessary for the submersible motion of the violent motion. For the flow field, such as the slow flow of the flow, the sign of the violent motion is the large partial drop: for the solitary wave, even the small partial drop of several tens of meters should be paid attention. This paper reveals the motion law of the submersible mark: the submersible mark. The motion of a current driven by a current is similar to the flow velocity structure; the trajectory of the submersible motion caused by a certain frequency is an ellipse, the velocity and the velocity of the submersible mark are basically vertical, and the submersible motion is 90 degrees ahead of the phase in the position phase, and the velocity of the submersible motion caused by the same size is inversely proportional to the cycle. The unequal structure of the standard will break the ideal relationship, but the actual submersible motion is generally dominated by the upper current. The ocean is a complex and changeable environment. The submersible system formed by a variety of instruments has been working in it for a long time, and it is unavoidable to produce a variety of conditions and cause some abnormal or missing data. Therefore, the number of existing numbers in the submersible system is fully utilized. It is very rare and useful to realize the inversion of the missing data. The depth of the ADCP can be retrieved by the acoustic echo signal. The previous related studies have not taken into account the interference, but in the actual observation, there will be interference between the acoustic echo signals of each beam, and the singular values caused by the possible causes such as the circuit will also be polluted. In this paper, the characteristics and laws of these disturbances are analyzed and summed up, and then the effects of these effects are eliminated before fitting in order to get more accurate and practical inversion depth. In the case of depth lack, it is a reliable substitute. In the case of the depth of observation, they can confirm each other and further eliminate the singular values, thus the depth is inverse. It greatly increases the redundancy and security of this basic data. Using the temperature chain to realize the observation of the upper ocean temperature is an important application of the submersible standard. However, the top temperature is often absent from the influence of the submersible motion caused by the strong current. How to accurately realize the compensation and inversion of the measured temperature is a choice. The new problem of war is studied in this paper. In theory, the temperature inversion can be carried out by the following methods: the contrast between the inversion depth and the observation depth obtained through the ADCP echo, and then the actual average sound speed of the ADCP to the sea surface can be obtained by combining the measured sound velocity of the ADCP, and the top layer can be obtained by removing the temperature chain from the sound velocity. The mean temperature value is used as the control condition. The temperature inversion of the missing part can be achieved by observing the top of the SST and the top of the temperature chain as the temperature, the lower boundary condition and the thermocline structure before and after the absence of the measured time.
【學(xué)位授予單位】:中國(guó)海洋大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:P715.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;中國(guó)首次在南極成功投放并回收潛標(biāo)系統(tǒng)[J];瀘州科技;2010年01期
2 侯廣利;張穎;孫繼昌;張穎穎;王亞洲;;一種潛標(biāo)的水下姿態(tài)變化規(guī)律分析[J];海洋技術(shù);2010年03期
3 楊坤漢;;試論潛標(biāo)系統(tǒng)在我國(guó)海洋事業(yè)中的地位和作用[J];海洋技術(shù);1989年01期
4 毛祖松;海洋潛標(biāo)技術(shù)的應(yīng)用與發(fā)展[J];海洋測(cè)繪;2001年04期
5 劉愉強(qiáng);盛巖峰;王俊勤;何紅輝;;潛標(biāo)系統(tǒng)靜態(tài)力學(xué)分析計(jì)算及其應(yīng)用程序開(kāi)發(fā)[J];海洋技術(shù);2010年03期
6 劉慧;楊書(shū)凱;劉敏;韓桂海;初士博;牛軍;;三維圖形技術(shù)在潛標(biāo)姿態(tài)回放系統(tǒng)中的應(yīng)用[J];信息技術(shù)與信息化;2011年04期
7 宋銘航;;單點(diǎn)錨定繃緊型千米潛標(biāo)系統(tǒng)的設(shè)計(jì)和計(jì)算[J];海洋技術(shù);1989年01期
8 楊坤漢;王明午;;繃緊型單點(diǎn)錨定潛標(biāo)系統(tǒng)布放回收操作方法[J];海洋技術(shù);1989年01期
9 葛德宏;朱海;陳建華;蔡鵬;;深海潛標(biāo)系統(tǒng)運(yùn)動(dòng)仿真研究[J];大連海事大學(xué)學(xué)報(bào);2014年01期
10 鄒吉武;孫大軍;呂云飛;;海洋矢量聲場(chǎng)觀測(cè)浮標(biāo)與潛標(biāo)系統(tǒng)[J];聲學(xué)技術(shù);2010年02期
相關(guān)會(huì)議論文 前7條
1 劉愉強(qiáng);盛巖峰;姜峰;黃慶雄;;潛標(biāo)系統(tǒng)靜態(tài)力學(xué)分析計(jì)算及其應(yīng)用程序開(kāi)發(fā)[A];第二十一屆海洋測(cè)繪綜合性學(xué)術(shù)研討會(huì)論文集[C];2009年
2 王婷;;國(guó)外海洋潛標(biāo)系統(tǒng)的發(fā)展[A];中國(guó)聲學(xué)學(xué)會(huì)水聲學(xué)分會(huì)2011年全國(guó)水聲學(xué)學(xué)術(shù)會(huì)議論文集[C];2011年
3 劉愉強(qiáng);盛巖峰;姜峰;黃慶雄;;潛標(biāo)系統(tǒng)靜態(tài)力學(xué)分析計(jì)算及其應(yīng)用程序開(kāi)發(fā)[A];中國(guó)測(cè)繪學(xué)會(huì)第九次全國(guó)會(huì)員代表大會(huì)暨學(xué)會(huì)成立50周年紀(jì)念大會(huì)論文集[C];2009年
4 衛(wèi)闌,
本文編號(hào):1785130
本文鏈接:http://sikaile.net/kejilunwen/haiyang/1785130.html