沙質(zhì)海岸剖面演化數(shù)值模型研究
本文選題:沙質(zhì)海岸 切入點:海岸水動力 出處:《大連理工大學》2014年碩士論文
【摘要】:沙質(zhì)海岸是一種常見的海岸類型,主要由較粗的顆粒組成,如砂、礫、卵石等。具有岸灘較窄、岸線平順、坡度較陡的形態(tài)特點,是發(fā)展?jié)O港、旅游、沿海養(yǎng)殖的理想場所,具有重要的經(jīng)濟價值。近些年來,自然環(huán)境的改變加之人為因素的干擾,我國的沙質(zhì)海岸的侵蝕逐步加劇,在影響生態(tài)環(huán)境的同時,也給社會經(jīng)濟的發(fā)展造成不可估量的損失。因此,對災害性海岸泥沙運動進行研究,為防止不利的海岸變形和充分發(fā)揮海岸變形在社會經(jīng)濟發(fā)展中的有利作用具有重大的意義。 本文建立了基于有限差分方法(FDM)與有限體積方法(FVM)混合求解的新型Boussinesq波浪數(shù)值模型,并將其作為驅(qū)動力與邊界層模型、輸沙模型和地形更新模型耦合形成基于動力過程的岸灘剖面演變數(shù)值模型,對波浪作用下沙質(zhì)岸灘的變形進行研究,文章主要內(nèi)容包括: 1.新型Boussinesq類波浪數(shù)值模型的建立 基于Boussinesq水波方程的波浪模型能夠描述近岸區(qū)域波浪傳播、變形、爬坡、非線性流體運動等動力因素,成為研究海岸泥沙的有力工具。然而,現(xiàn)有的Boussinesq類波浪數(shù)值模型多采用有限差分方法進行求解,這種方法有簡單明了,編程容易等優(yōu)點。但基于有限差分求解的Boussinesq數(shù)學模型存在一些不容忽視的弊端:穩(wěn)定性差、采用經(jīng)驗方式處理波浪破碎和干濕動邊界、諸多參數(shù)的引入導致應用不便。本文建立了基于有限差分和有限體積方法混合求解Boussinesq方程的波浪數(shù)值模型,模型具有穩(wěn)定性強、易于處理波浪破碎和捕捉海岸動邊界等優(yōu)點。 2.基于動力過程的岸灘剖面演化數(shù)值模型的建立 通過求解邊界層模塊獲得底部剪切應力,進而求得輸沙率,采用高精度格式求解地形更新方程,采用守恒格式進行地形光滑。將本文建立的新型Boussinesq類波浪數(shù)值模型作為驅(qū)動力耦合上述諸模塊形成基于動力過程的岸灘剖面演變數(shù)值模型,對波浪作用下沙質(zhì)岸灘剖面的變形進行了數(shù)值模擬研究。
[Abstract]:Sandy coast is a common coastal type, mainly composed of coarse particles, such as sand, gravel, pebbles, etc.It has the characteristics of narrow shoreline, smooth shoreline and steep slope. It is an ideal place for developing fishing port, tourism and coastal culture, and has important economic value.In recent years, with the change of natural environment and the disturbance of human factors, the erosion of sandy coast in our country is gradually intensified, which not only affects the ecological environment, but also causes incalculable losses to the development of social economy.Therefore, it is of great significance to study the disastrous coastal sediment movement in order to prevent the adverse coastal deformation and give full play to the favorable role of coastal deformation in the social and economic development.In this paper, a new Boussinesq wave numerical model based on the finite difference method (FDM) and the finite volume method (FVM) is established and used as the driving force and the boundary layer model.The sediment transport model and the topographic renewal model are coupled to form a numerical model of shoreline profile evolution based on dynamic process. The deformation of sandy shoreline under wave action is studied. The main contents of this paper are as follows:1.Establishment of a new Boussinesq wave numerical modelThe wave model based on Boussinesq's water wave equation can describe the dynamic factors such as wave propagation, deformation, slope climbing and nonlinear fluid movement in the coastal area. It is a powerful tool for studying coastal sediment.However, most of the existing Boussinesq wave numerical models are solved by finite difference method, which has the advantages of simplicity and simplicity, easy programming and so on.However, the Boussinesq mathematical model based on finite difference solution has some drawbacks that can not be ignored: poor stability, the treatment of wave breakage and dry-wet boundary by empirical method, and the inconvenience of application due to the introduction of many parameters.In this paper, a wave numerical model based on finite difference and finite volume method for solving Boussinesq equation is established. The model has the advantages of strong stability, easy to deal with wave breakage and to capture the moving boundary of the coast.2.Establishment of a numerical model of shoreline profile evolution based on dynamic processThe bottom shear stress is obtained by solving the boundary layer module, and the sediment transport rate is obtained. The topographic updating equation is solved with high precision scheme, and the terrain is smooth with conservation scheme.The new Boussinesq wave numerical model is used as a driving force to couple the above modules to form a dynamic process based numerical model of shoal profile evolution. The deformation of sandy shoreline profile under wave action is numerically simulated.
【學位授予單位】:大連理工大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:P737.1
【參考文獻】
相關(guān)期刊論文 前10條
1 房克照,鄒志利,王艷;An Explicit High Resolution Scheme for Nonlinear Shallow Water Equations[J];China Ocean Engineering;2005年03期
2 李紹武,尹振軍;N-S方程的數(shù)值解法及其在水波動力學中應用的綜述[J];海洋通報;2004年04期
3 徐嘯;;二維沙質(zhì)海灘的類型和沖淤判數(shù)[J];海洋工程;1988年04期
4 房克照;劉忠波;唐軍;鄒志利;尹繼偉;;潛礁上孤立波傳播的數(shù)值模擬[J];哈爾濱工程大學學報;2014年03期
5 房克照;孫家文;劉忠波;尹晶;張哲;;Boussinesq水波方程新型數(shù)值解法[J];海洋工程;2014年02期
6 李孟國,王正林,蔣德才;關(guān)于波浪Boussinesq方程的研究[J];青島海洋大學學報(自然科學版);2002年03期
7 房克照;鄒志利;劉忠波;;沙壩海岸上裂流的數(shù)值模擬[J];水動力學研究與進展A輯;2011年04期
8 劉忠波;鄒志利;孫昭晨;;加強的適合復雜地形的水波方程及其一維數(shù)值模型驗證[J];海洋學報(中文版);2008年03期
9 房克照;鄒志利;;應用二階完全非線性Boussinesq方程模擬破碎波浪[J];水科學進展;2012年01期
10 房克照;鄒志利;孫家文;劉忠波;;擴展型Boussinesq水波方程的混合求解格式[J];水科學進展;2013年05期
相關(guān)博士學位論文 前1條
1 尹晶;海岸沙壩運動的實驗與數(shù)值模擬研究[D];大連理工大學;2012年
,本文編號:1698528
本文鏈接:http://sikaile.net/kejilunwen/haiyang/1698528.html