極地海冰浮標(biāo)監(jiān)測系統(tǒng)的設(shè)計及應(yīng)用研究
本文選題:極地 切入點(diǎn):海冰厚度 出處:《太原理工大學(xué)》2015年碩士論文
【摘要】:本課題是在國家自然科學(xué)基金“基于電容感應(yīng)技術(shù)的海冰厚度監(jiān)測方法的研究”(編號:60672028)和“南北極環(huán)境綜合考察與評估”(編號:CHINAER2014-02-02)十二五專項(xiàng)項(xiàng)目資助下針對南北極海冰自動監(jiān)測技術(shù)展開的應(yīng)用研究。 隨著人類對南北極的不斷探索,人們在南北極展開了各種領(lǐng)域的研究。隨著研究的不斷深入,科學(xué)家發(fā)現(xiàn)海冰在地球氣候,極地海洋,南北極冰凍圈演變以及南北極生物圈等多個領(lǐng)域中起著至關(guān)重要的作用。海冰每年最多可以夠覆蓋地球表面積大約7%左右,其中最大的部分分布在地球的南北極,顯然海冰在南北極的研究中占有很大的比重。而海冰的生長消融及漂移是海冰熱力學(xué)與動力學(xué)研究中的重點(diǎn)及難點(diǎn)。 目前國內(nèi)外關(guān)于海冰監(jiān)測的方法較多,,例如利用衛(wèi)星遙感技術(shù)或飛機(jī)航拍技術(shù)大范圍的監(jiān)測海冰的生長及漂移,利用長期或短期冰站定點(diǎn)人工監(jiān)測海冰等。但這些技術(shù)手段都有其不足之處,比如經(jīng)濟(jì)性差,精度不高和無法長期連續(xù)觀測等。本文在分析國內(nèi)外海冰監(jiān)測技術(shù)的現(xiàn)狀及其優(yōu)缺點(diǎn)的基礎(chǔ)上,針對極地海冰監(jiān)測實(shí)際現(xiàn)場環(huán)境,以海冰浮標(biāo)為主體,設(shè)計了海冰浮標(biāo)監(jiān)測系統(tǒng)。論文根據(jù)電容式冰厚傳感器在極地海冰厚度監(jiān)測中發(fā)現(xiàn)的問題進(jìn)行了改進(jìn)研究,以冰基浮標(biāo)和海洋浮標(biāo)分別作為監(jiān)測系統(tǒng)載體,根據(jù)監(jiān)測需求詳細(xì)研究了監(jiān)測方案和監(jiān)測控制軟件,包括在浮標(biāo)上搭載各種傳感器,GPS定位模塊,銥星無線傳輸模塊等,研制成功海冰浮標(biāo)監(jiān)測系統(tǒng),實(shí)現(xiàn)了在無人值守的惡劣環(huán)境下長期連續(xù)的海冰參數(shù)遠(yuǎn)程監(jiān)測。 本監(jiān)測系統(tǒng)利用電容式冰厚傳感器判斷海冰厚度,利用溫度鏈監(jiān)測海冰生長過程中的溫度剖面的變化,利用冰上聲吶傳感器傳感器和冰下聲吶傳感器傳感器對海冰厚度做輔助監(jiān)測判斷,利用GPS技術(shù)定位海冰的漂移軌跡,利用美國銥星網(wǎng)絡(luò)實(shí)時的將數(shù)據(jù)傳回國內(nèi)。本監(jiān)測系統(tǒng)具有經(jīng)濟(jì)性好,精度高和數(shù)據(jù)通訊實(shí)時性好等優(yōu)點(diǎn)。 本監(jiān)測系統(tǒng)進(jìn)行了實(shí)驗(yàn)室和野外的低溫實(shí)驗(yàn),以及第30次南極和第6次北極考察中進(jìn)行了現(xiàn)場實(shí)驗(yàn),實(shí)驗(yàn)結(jié)果初步表明該海冰浮標(biāo)監(jiān)測系統(tǒng)具有可靠的穩(wěn)定性,精確性以及通訊數(shù)據(jù)丟包率低等優(yōu)點(diǎn),有效地為南北極的科學(xué)考察提供了數(shù)據(jù)支持。
[Abstract]:The research on sea ice thickness monitoring method based on capacitive induction technology was supported by the National Natural Science Foundation of China (No.:: 60672028) and the "Comprehensive investigation and Assessment of Arctic and Southern Environment" (No.: chinerer 2014-02-02). Research on the Application of Polar Sea Ice automatic Monitoring Technology. With the continuous exploration of the Arctic and the South, people have carried out various fields of research in the Arctic and the South. With the deepening of the research, scientists have found that sea ice is in the earth's climate, polar oceans, The evolution of the arctic cryosphere and the arctic biosphere play a crucial role. Sea ice can cover up to about 7 percent of the earth's surface area each year, the largest of which is distributed in the Earth's Arctic and South Pole. It is obvious that the sea ice occupies a large proportion in the study of the Arctic and the South Pole, and the melting and drift of the sea ice is the key and difficult point in the study of thermodynamics and dynamics of sea ice. At present, there are many methods of sea ice monitoring at home and abroad, such as using satellite remote sensing technology or aircraft aerial photography technology to monitor the growth and drift of sea ice on a large scale. Using long-term or short-term ice stations to manually monitor sea ice, etc., but these techniques have their disadvantages, such as poor economy. On the basis of analyzing the present situation of sea ice monitoring technology at home and abroad and its merits and demerits, aiming at the actual field environment of polar sea ice monitoring, the sea ice buoy is taken as the main body. The monitoring system of sea ice buoy is designed. According to the problems found by capacitive ice thickness sensor in monitoring the thickness of polar sea ice, the ice based buoy and the ocean buoy are used as the carrier of the monitoring system, respectively. According to the monitoring requirements, the monitoring scheme and monitoring control software are studied in detail, including carrying various sensors and GPS positioning modules on the buoy, Iridium satellite wireless transmission module, and so on. The monitoring system of sea ice buoy has been developed successfully. Long-term continuous remote monitoring of sea ice parameters in unattended environment is realized. This monitoring system uses capacitive ice thickness sensor to judge sea ice thickness and uses temperature chain to monitor the change of temperature profile in the process of sea ice growth. Using the sonar sensor on the ice and the sonar sensor under the ice to monitor and judge the thickness of the sea ice, the drift track of the sea ice is located by using the GPS technology. The Iridium network is used to transmit data back to China in real time. This monitoring system has the advantages of good economy, high precision and good real-time data communication. The low temperature experiments in laboratory and field, and the field experiments in the 30th Antarctic and 6th Arctic surveys have been carried out in this monitoring system. The experimental results show that the monitoring system of sea ice buoy has reliable stability. The advantages of accuracy and low packet loss rate of communication data provide data support for the scientific exploration of the North and South Pole.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:P715
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 謝東;李昌禧;;同面散射場電容式砂含水量傳感器的研究[J];傳感技術(shù)學(xué)報;2008年12期
2 徐樂年;張磊;員玉良;;基于CDC技術(shù)的電容式水平位移傳感器[J];傳感器與微系統(tǒng);2010年05期
3 郭井學(xué);孫波;田鋼;王幫兵;張向培;;南極普里茲灣海冰厚度的電磁感應(yīng)探測方法研究[J];地球物理學(xué)報;2008年02期
4 秦德培;非平行板電容器電場和電容的簡化計算[J];大學(xué)物理;1995年01期
5 孟凡文,張玉香,胡連柱;消除電容傳感器寄生電容干擾的幾種方法[J];今日電子;2004年07期
6 琚汝強(qiáng);劉敬彪;于海濱;;基于銥星的浮標(biāo)遠(yuǎn)程監(jiān)測與數(shù)據(jù)傳輸系統(tǒng)[J];電子技術(shù)應(yīng)用;2010年12期
7 劉秉安;;電容式傳感器寄生電容的抑制[J];國外電子測量技術(shù);2011年03期
8 王愛玲,房亞民;電容傳感器寄生電容干擾的產(chǎn)生原因及消除方法[J];華北科技學(xué)院學(xué)報;2005年01期
9 李薇;葉林;張杰;張洪;;光纖式結(jié)冰傳感器的試驗(yàn)研究[J];華中科技大學(xué)學(xué)報(自然科學(xué)版);2009年08期
10 雷瑞波;李志軍;張占海;程言峰;竇銀科;;Summer fast ice evolution off Zhongshan Station,Antarctica[J];Chinese Journal of Polar Science;2008年01期
本文編號:1665804
本文鏈接:http://sikaile.net/kejilunwen/haiyang/1665804.html