復(fù)合式筒型基礎(chǔ)波浪荷載特性研究
本文選題:復(fù)合式筒形基礎(chǔ) 切入點(diǎn):海上風(fēng)電 出處:《天津大學(xué)》2014年碩士論文
【摘要】:風(fēng)能資源具有高效和環(huán)保的優(yōu)點(diǎn),現(xiàn)已成為許多國家開發(fā)和利用的重要能源。海上風(fēng)力資源是陸地風(fēng)力資源的5倍,所以風(fēng)電正在向海上發(fā)展。海上風(fēng)機(jī)的基礎(chǔ)矗立于復(fù)雜的海洋環(huán)境中,準(zhǔn)確計(jì)算基礎(chǔ)上所受波浪荷載尤為關(guān)鍵。本文基于線性繞射理論改進(jìn)了MacCamy-Fuchs公式,使之適用于復(fù)合式筒型基礎(chǔ)計(jì)算,并設(shè)立了四組規(guī)則波工況,分別通過Flow-3D數(shù)值波浪水槽模擬和物理水槽模型試驗(yàn)對(duì)改進(jìn)公式的計(jì)算結(jié)果進(jìn)行了驗(yàn)證。本文的主要內(nèi)容和結(jié)論如下: (1)基于線性繞射理論改進(jìn)并推導(dǎo)了適用于大尺度結(jié)構(gòu)物上的波浪荷載計(jì)算公式。新公式將原公式中的定值半徑r改為沿水深改變的函數(shù)R z,并簡化了邊界條件。在規(guī)則線性波浪作用下,改進(jìn)公式計(jì)算結(jié)果與規(guī)則結(jié)構(gòu)物上波浪荷載計(jì)算結(jié)果規(guī)律相符合,,計(jì)算荷載大小比前人使用莫里森公式計(jì)算出的結(jié)果略大。 (2)利用計(jì)算流體動(dòng)力學(xué)軟件Flow3D建立了波浪和建筑物相互作用的三維數(shù)值水槽模型,模型采用規(guī)則造波邊界造波,孔隙質(zhì)結(jié)合出流邊界進(jìn)行消波。文本在數(shù)值水槽模擬中驗(yàn)證了天津大學(xué)李世森提出的在垂向孔隙率取為0.8,橫向和縱向孔隙率取為0.9時(shí),能有效減小出流邊界的波浪反射的結(jié)論,并計(jì)算出了波浪荷載。數(shù)值計(jì)算結(jié)果與改進(jìn)公式計(jì)算結(jié)果比較相差在3%-9%。 (3)在物理水槽中,設(shè)立了波浪模型試驗(yàn)。在按照幾何比尺制作的風(fēng)機(jī)基礎(chǔ)模型上安裝了25只點(diǎn)脈壓傳感器對(duì)基礎(chǔ)上的波浪荷載進(jìn)行測量。文本利用平面上的點(diǎn)面轉(zhuǎn)化系數(shù)公式,得到了復(fù)合式筒型基礎(chǔ)在不同波浪荷載下的點(diǎn)面轉(zhuǎn)化系數(shù),取值范圍為0.75-0.85。物理模型測試結(jié)果與改進(jìn)公式計(jì)算結(jié)果比較相差在1%-10%,與數(shù)值計(jì)算結(jié)果比較相差在1%-9%。此結(jié)論充分驗(yàn)證了改進(jìn)公式的準(zhǔn)確性,并可以為海上風(fēng)機(jī)基礎(chǔ)設(shè)計(jì)提供一定的參考。
[Abstract]:Wind energy, which has the advantages of high efficiency and environmental protection, has become an important source of energy for development and utilization in many countries. So wind power is developing to the sea. The foundation of offshore fan stands in complex marine environment. It is very important to calculate wave load on the basis of accurate calculation. In this paper, the MacCamy-Fuchs formula is improved based on linear diffraction theory. It is suitable for the calculation of composite cylindrical foundation, and four sets of regular wave conditions are established. The calculation results of the improved formula are verified by Flow-3D numerical wave flume simulation and physical flume model test respectively. The main contents and conclusions of this paper are as follows:. 1) based on the theory of linear diffraction, the formula for calculating wave loads on large scale structures is derived. The new formula changes the constant radius r of the original formula to the function R z, which changes along the depth of water, and simplifies the boundary conditions. Under regular linear waves, The calculated results of the improved formula are consistent with the results of wave loads on regular structures, and the calculated loads are slightly larger than those calculated by previous researchers using Morrison's formula. (2) using the computational fluid dynamics software Flow3D, a three-dimensional numerical water tank model of wave and building interaction is established. The model uses regular wave boundary to generate waves. In the numerical flume simulation of Tianjin University, Li Shisen's conclusion that the vertical porosity is 0.8 and the transverse and longitudinal porosity is 0.9 can effectively reduce the wave reflection at the outlet boundary. The wave loads are calculated. The difference between the numerical results and the results of the improved formula is between 3 and 9. A wave model test was established in the physical flume. 25 point pulse pressure sensors were installed to measure the wave load on the fan foundation model made according to the geometric scale. The point and surface conversion coefficients of composite cylindrical foundation under different wave loads are obtained. The range of values is 0.75-0.85.The difference between the results of the physical model test and the calculation of the improved formula is 1- 10, and the difference between the results of the physical model and the numerical calculation is 1- 9.This conclusion fully verifies the accuracy of the improved formula. And it can provide some reference for the foundation design of offshore fan.
【學(xué)位授予單位】:天津大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:P731.2;P742
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 齊鵬,王永學(xué);三維數(shù)值波浪水池技術(shù)與應(yīng)用[J];大連理工大學(xué)學(xué)報(bào);2003年06期
2 王永學(xué);孤立波破碎過程試驗(yàn)與數(shù)模結(jié)果比較[J];大連理工大學(xué)學(xué)報(bào);1994年04期
3 林鶴云;郭玉敬;孫蓓蓓;蔣彥龍;黃允凱;張建潤;盧熹;;海上風(fēng)電的若干關(guān)鍵技術(shù)綜述[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年04期
4 張憲平;;海上風(fēng)電發(fā)展現(xiàn)狀及發(fā)展趨勢[J];電氣時(shí)代;2011年03期
5 陳曉明;李磊;王紅梅;劉燕星;江峰;林慰;;關(guān)于海上風(fēng)電發(fā)展的概況和對(duì)策[J];廣東造船;2011年01期
6 舒寧,王曼穎;合田良實(shí)波壓力計(jì)算公式在英國標(biāo)準(zhǔn)中的應(yīng)用[J];中國港灣建設(shè);2003年01期
7 丁紅巖;翟少華;張浦陽;;海上風(fēng)電大尺度頂承式筒型基礎(chǔ)承載力特性有限元分析[J];工程力學(xué);2013年06期
8 李世森;江鳴;;數(shù)值波浪水槽末段孔隙結(jié)構(gòu)消波性能的研究[J];港工技術(shù);2012年05期
9 張玲,王愛群;關(guān)于小直徑垂直樁柱結(jié)構(gòu)的波浪力研究[J];海洋湖沼通報(bào);2004年03期
10 黃維平;劉建軍;趙戰(zhàn)華;;海上風(fēng)電基礎(chǔ)結(jié)構(gòu)研究現(xiàn)狀及發(fā)展趨勢[J];海洋工程;2009年02期
本文編號(hào):1661557
本文鏈接:http://sikaile.net/kejilunwen/haiyang/1661557.html