深海沉積物保壓轉(zhuǎn)移裝置研究
發(fā)布時(shí)間:2018-03-22 07:42
本文選題:深海 切入點(diǎn):沉積物 出處:《浙江大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著深海探測技術(shù)的發(fā)展,深海資源的開發(fā)價(jià)值逐漸被挖掘出來。與傳統(tǒng)地表微生物不同,深海微生物由于長期處于極端環(huán)境,其生理結(jié)構(gòu)和活動(dòng)特征非常獨(dú)特,在生命科學(xué)研究、工業(yè)生產(chǎn)、基因資源開發(fā)等等領(lǐng)域均有著不可估量的應(yīng)用前景。與之對(duì)應(yīng)的是,尚還處于發(fā)展初期的深海微生物研究設(shè)備,往往難以保證取樣回來的微生物的活性,其關(guān)鍵難點(diǎn)在于保壓。要在內(nèi)壓數(shù)十兆帕的環(huán)境進(jìn)行取樣操作,這無疑增加了設(shè)計(jì)的難度。本文旨在提出一套針對(duì)深海沉積物的從取樣到培養(yǎng)釜的整體解決方案。目前,國內(nèi)在沉積物取樣系統(tǒng),深海微生物培養(yǎng)系統(tǒng)等方面有較多研究,但是,對(duì)于如何將取樣器中的沉積物樣品轉(zhuǎn)移的培養(yǎng)系統(tǒng)用于微生物培養(yǎng)的方法則介紹得很少。本文設(shè)計(jì)的深海沉積物保壓轉(zhuǎn)移裝置可以用于解決這一問題。全文共分為六章。第一章,首先介紹了深海取樣及深海微生物研究的背景知識(shí),然后分析了國內(nèi)外在深海沉積物及微生物研究方面所做出的努力,由于國內(nèi)尚無成熟的深海微生物系統(tǒng)分析方案,亟需在保壓轉(zhuǎn)移設(shè)備的研制,借此提出了本課題研究的目的、意義和主要內(nèi)容;第二章,簡要介紹了與深海沉積物保壓轉(zhuǎn)移裝置配套的取樣器、培養(yǎng)系統(tǒng)等裝置的相關(guān)信息,為確定設(shè)計(jì)目標(biāo)提供了依據(jù),然后從機(jī)械結(jié)構(gòu)、液壓系統(tǒng)和電控系統(tǒng)等三個(gè)方面提出了保壓轉(zhuǎn)移裝置的總體方案;第三章,涉及到系統(tǒng)機(jī)電液三方面的具體計(jì)算,根據(jù)總體設(shè)計(jì)方案,從零部件的角度提出設(shè)計(jì)準(zhǔn)則,對(duì)諸如取樣筒、齒輪、齒輪條、保壓筒、蓄能器、電機(jī)等一些部件進(jìn)行了計(jì)算分析,同時(shí)利用有限元分析軟件Ansys對(duì)部分關(guān)鍵部件進(jìn)行校核和結(jié)構(gòu)優(yōu)化,實(shí)現(xiàn)安全性和經(jīng)濟(jì)性;第四章,針對(duì)機(jī)械系統(tǒng)提出了利用虛擬樣機(jī)軟件ADAMS實(shí)現(xiàn)對(duì)保壓轉(zhuǎn)移裝置中機(jī)械執(zhí)行機(jī)構(gòu)的仿真,首先介紹了虛擬樣機(jī)模型建立的方法及注意問題,然后對(duì)所建立的模型進(jìn)行了運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)仿真分析,驗(yàn)證保壓轉(zhuǎn)移過程的運(yùn)動(dòng)規(guī)律,提供用于裝置改進(jìn)的參數(shù)分析;第五章,利用前述的計(jì)算結(jié)果搭建試驗(yàn)樣機(jī),重點(diǎn)介紹了其中的機(jī)械結(jié)構(gòu)以及電控組件的選擇,然后進(jìn)行位移及子采樣試驗(yàn),驗(yàn)證該機(jī)械結(jié)構(gòu)的可行性;第六章,總結(jié)與展望,概述了深海沉積物保壓轉(zhuǎn)移裝置的研究成果,并通過指出其存在的不足對(duì)進(jìn)一步的研究工作進(jìn)行了展望。
[Abstract]:With the development of deep-sea exploration technology, the exploitation value of deep-sea resources has gradually been excavated. Unlike traditional surface microbes, deep-sea microbes are in extreme environment for a long time, and their physiological structure and activity characteristics are very unique. In life science research, industrial production, genetic resources development and other fields, there are inestimable application prospects. In contrast, deep-sea microbiological research equipment, which is still in the early stage of development, It is often difficult to ensure the activity of sampled microorganisms, the key difficulty of which is keeping pressure. Sampling operations are carried out in an environment of tens of MPA of internal pressure. The purpose of this paper is to put forward a whole solution from sampling to culture kettle for deep-sea sediment. At present, there are more researches on sediment sampling system, deep-sea microorganism culture system and so on in our country. However, The method of how to transfer sediment samples from sampler to microorganism culture system is seldom introduced. The deep-sea sediment pressure transfer device designed in this paper can be used to solve this problem. For six chapters. Chapter one, This paper first introduces the background knowledge of deep sea sampling and deep sea microorganism research, then analyzes the domestic and foreign efforts in deep sea sediment and microorganism research, because there is no mature deep sea microbial system analysis scheme in China. Therefore, the purpose, significance and main contents of this research are put forward. In chapter 2, the relevant information of sampler and culture system matching with deep-sea sediment retention transfer device is briefly introduced. This paper provides the basis for determining the design objective, and then puts forward the overall scheme of the pressure holding transfer device from three aspects: mechanical structure, hydraulic system and electronic control system. According to the overall design scheme, the design criteria are put forward from the point of view of parts, and some parts such as sampling tube, gear, gear bar, pressure retaining cylinder, accumulator, motor and so on are calculated and analyzed. At the same time, the finite element analysis software Ansys is used to check and optimize some key components to realize security and economy. In view of the mechanical system, a virtual prototype software ADAMS is used to realize the simulation of the mechanical actuator in the pressure maintaining transfer device. Firstly, the method of establishing the model of the virtual prototype and the problems needing attention are introduced. Then the kinematics and dynamics simulation analysis of the established model is carried out to verify the motion law of the pressure holding transfer process and to provide parameter analysis for the improvement of the device. In chapter 5, the experimental prototype is built using the aforementioned calculation results. The mechanical structure and the selection of electronic control components are introduced emphatically, and then the displacement and sub-sampling tests are carried out to verify the feasibility of the mechanical structure. Chapter 6, summing up and looking forward, summarizes the research results of the deep-sea sediment pressure holding transfer device. By pointing out its shortcomings, the further research work is prospected.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:P715.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前1條
1 王風(fēng)平;周悅恒;張新旭;肖湘;;深海微生物多樣性[J];生物多樣性;2013年04期
,本文編號(hào):1647712
本文鏈接:http://sikaile.net/kejilunwen/haiyang/1647712.html
最近更新
教材專著