基于聚類分析法鑒別長期風(fēng)化的沉底油
發(fā)布時間:2018-03-19 05:10
本文選題:沉底油 切入點:長期風(fēng)化 出處:《環(huán)境科學(xué)與技術(shù)》2017年07期 論文類型:期刊論文
【摘要】:為了鑒別長期風(fēng)化的沉底油,以1種原油(A)和2種燃油(B和C)為研究對象,采用重復(fù)性限法篩選340 d風(fēng)化的水面漂浮油和水下沉底油的穩(wěn)定診斷比,并基于這些診斷比對沉底油進行聚類分析。結(jié)果表明,診斷比的穩(wěn)定性不僅和油種、風(fēng)化時間有關(guān),還和溢油的存在形態(tài)密切相關(guān);輕組分含量相對高的A和B的沉底油比它們對應(yīng)的漂浮油受到的風(fēng)化影響更大,而重組分含量高的C正好相反,研究最終得到4個適合鑒別長期風(fēng)化漂浮油和沉底油的穩(wěn)定診斷比;聚類分析法可將沉底油與其油源很好地聚類,并可反映沉底油的風(fēng)化程度。因此,基于穩(wěn)定診斷比的聚類分析法可用于鑒別長期風(fēng)化的沉底油,值得進一步推廣。
[Abstract]:In order to identify long-term weathering of bottom oil, with 1 kinds of crude oil (A) and 2 kinds of fuel (B and C) as the research object, the repeatability limit method for screening 340 D weathered floating bottom oil and water stability under diagnosis ratio, and based on the clustering analysis of these diagnostic results. Comparison of bottom oil show that the diagnosis ratio and stability not only oil, weathering time, and oil spill forms are closely related; the weathering effect of floating oil content of light components with relatively high A and B than their corresponding bottom oil is larger, and the reorganization of the high content of C on the contrary, the research finally obtained 4 for the identification of long-term weathering and floating oil and bottom oil stability than the clustering analysis method can diagnose; oil and oil source will sink well cluster, and can reflect the degree of weathering of bottom oil. Therefore, stable diagnostic than cluster analysis method can be used for the identification of the bottom oil based on long-term weathering It is worth further promotion.
【作者單位】: 大連海事大學(xué)環(huán)境科學(xué)與工程學(xué)院;
【基金】:國家重點研發(fā)計劃項目(2016YFC1402301) 國家自然科學(xué)基金項目(41576111,11675031) 遼寧省教育廳科研項目(L2015061) 遼寧省科技廳科研項目(2015020596) 中央高校基本科研業(yè)務(wù)費專項基金資助項目(3132016327)
【分類號】:X55
【相似文獻】
相關(guān)期刊論文 前5條
1 林小蘋,黃長江,林福榮,陳旭明;海水富營養(yǎng)化評價的主成分-聚類分析方法[J];數(shù)學(xué)的實踐與認(rèn)識;2004年12期
2 徐恒振,尚龍生,周傳光,劉彤;Euclid貼近度聚類分析鑒別海面溢油[J];海洋與湖沼;1995年06期
3 劉伯勝,,時啟猛;聚類分析方法識別水下目標(biāo)[J];海洋工程;1995年04期
4 賈延峰;笪良龍;謝駿;;模糊ISODATA聚類算法在聲速剖面自動分類中的應(yīng)用[J];海洋科學(xué);2009年12期
5 李志強;李維泉;陳子q
本文編號:1632945
本文鏈接:http://sikaile.net/kejilunwen/haiyang/1632945.html
最近更新
教材專著