流—流耦合效應(yīng)對(duì)南海北部風(fēng)暴潮影響的數(shù)值模擬研究
本文選題:南海北部區(qū)域 切入點(diǎn):臺(tái)風(fēng)風(fēng)暴潮 出處:《中國科學(xué)院研究生院(海洋研究所)》2016年博士論文 論文類型:學(xué)位論文
【摘要】:中國南海北部區(qū)域受臺(tái)風(fēng)及風(fēng)暴潮災(zāi)害影響嚴(yán)重,每年會(huì)由臺(tái)風(fēng)風(fēng)暴潮災(zāi)害而出現(xiàn)重大經(jīng)濟(jì)損失和人員傷亡。在臺(tái)風(fēng)等極端天氣條件下近岸海浪會(huì)對(duì)流場(chǎng)和水位的產(chǎn)生極大影響,同時(shí)局地流場(chǎng)與水位也會(huì)影響到海浪場(chǎng)。因此,在研究臺(tái)風(fēng)過程中風(fēng)暴潮增水與流場(chǎng)演變時(shí),考慮浪-流耦合作用,引入環(huán)流模式與海浪模式耦合運(yùn)算,能得到更準(zhǔn)確的模擬結(jié)果。目前,浪-流耦合機(jī)制的研究還并不成熟,模擬臺(tái)風(fēng)風(fēng)暴潮時(shí),三維模式中浪-流耦合效應(yīng)對(duì)波致增/減水及波致流場(chǎng)影響機(jī)理有待進(jìn)一步驗(yàn)證。在浪-流耦合研究中,浪致流效應(yīng)中的守恒效應(yīng),即輻射應(yīng)力(或渦度力)效應(yīng)是一個(gè)重要的物理機(jī)制,它反映了波浪運(yùn)動(dòng)產(chǎn)生的剩余動(dòng)量通量,另外,波浪破碎引起的湍流效應(yīng)及浪致底應(yīng)力/表層應(yīng)力等非守恒效應(yīng)對(duì)于水位與環(huán)流場(chǎng)都有影響。為了研究采用輻射應(yīng)力(渦度力)以及非守恒效應(yīng)對(duì)波生流及波致增/減水的影響,本文采用了COAWST(Coupled ocean-atmosphere-wave-sediment transport modeling system)浪-流耦合模式中輻射應(yīng)力方案(Mellor,2008)及渦度力方案(McWilliams等,2004),模擬分析了“黑格比”及”鸚鵡”臺(tái)風(fēng)過程中,海浪通過守恒性浪致流效應(yīng)(輻射應(yīng)力/渦度力)及非守恒性浪致流效應(yīng)(表層/底層海浪摩擦,深度引起的海浪破碎等)對(duì)風(fēng)暴潮的影響程度及機(jī)制,研究發(fā)現(xiàn):(1)引入浪-流耦合方案后,模擬誤差減少了近10%,模擬效果更好,在浪致流效應(yīng)的影響下,臺(tái)風(fēng)中心右側(cè)的增水增加,左側(cè)的減水增強(qiáng),渦度力方案在近岸區(qū)域波致增/減水效果更為明顯,使風(fēng)暴潮強(qiáng)度變化為15%左右,輻射應(yīng)力方案對(duì)陸坡內(nèi)淺水區(qū)更為敏感;(2)相對(duì)于守恒性浪致流效應(yīng),非守恒性浪致流效應(yīng)對(duì)近岸流場(chǎng)及水位影響較弱,其引起波致增水/減水僅占守恒性波致增水/減水的20%左右,但是其強(qiáng)化了臺(tái)風(fēng)中心右側(cè)的增水及向岸流,加強(qiáng)了左側(cè)的減水及離岸流,而在考慮運(yùn)算效率的前提下,僅采用單向VF守恒性耦合方案能極大提升運(yùn)算效率,并滿足模擬精度要求;(3)渦度力耦合方案對(duì)不同路徑、移速臺(tái)風(fēng)及在不同水深條件下,都能敏感的反映出風(fēng)暴潮過程及浪-流耦合效應(yīng)對(duì)流場(chǎng)、水位的影響,而對(duì)快速移動(dòng)的臺(tái)風(fēng)及在水深較淺情況下,近岸浪致流效應(yīng)越強(qiáng),其引發(fā)的浪致增水對(duì)風(fēng)暴潮增水貢獻(xiàn)越大;(4)COAWST模式臺(tái)風(fēng)風(fēng)暴潮漫灘模擬實(shí)驗(yàn)?zāi)芊磻?yīng)出風(fēng)暴潮增水及漫灘過程的基本特征,模擬誤差控制在20%之內(nèi),有較好的模擬精度。
[Abstract]:The northern region of the South China Sea is seriously affected by typhoons and storm surges. In extreme weather conditions such as typhoons and other extreme weather conditions, the near shore waves will have a great impact on the convection field and the water level, and the local flow field and water level will also affect the wave field. In studying the evolution of storm surge and current field during typhoon, considering the wave-current coupling, the coupling operation of circulation model and wave model can be introduced to obtain more accurate simulation results. At present, the study of wave-current coupling mechanism is not yet mature. In the simulation of typhoon storm surge, the effect mechanism of wave-current coupling effect on wave-induced increase / reduction and wave-induced flow field in 3-D model needs to be further verified. In the wave-current coupling study, the conservation effect of wave-induced flow effect is discussed. That is, the radiation stress (or vorticity force) effect is an important physical mechanism, which reflects the residual momentum flux generated by wave motion. In order to study the effects of radiation stress (vorticity force) and non-conservation effect on wave-induced flow and wave-induced flow, the turbulent effect caused by wave breakage and non-conserved effects such as wave bottom stress / surface stress have influence on water level and circulation field in order to study the effects of radiation stress (vorticity force) and non-conservation effect on wave-induced flow. Effects of increased / reduced water, In this paper, the radiation stress scheme in the COAWST(Coupled ocean-atmosphere-wave-sediment transport modeling system model (Mellorne 2008) and the vorticity force scheme (McWilliams et al. 2004) are used to simulate and analyze the typhoon process of "Hegbyb" and "Parrot". The influence degree and mechanism of wave flow effect (radiation stress / vorticity force) and non-conserved wave effect (surface / bottom wave friction, depth induced wave breakage, etc.) on storm surge through conserved wave flow effect (radiation stress / vorticity force), It is found that after introducing the wave-current coupling scheme, the simulation error is reduced by nearly 10%, and the simulation effect is better. Under the influence of the wave induced flow effect, the water increase on the right side of the typhoon center and the water reduction on the left side are increased. The vorticity force scheme is more effective in increasing / reducing water caused by wave in the coastal area, which makes the intensity of storm surge change to about 15%, and the radiation stress scheme is more sensitive to shallow water in the slope than that of conserved wave. The effect of non-conserved wave-induced flow on the inshore flow field and water level is weak, and the wave-induced water increase / water reduction only accounts for about 20% of the conserved wave-induced water increase / water reduction effect, but it strengthens the water increase and directional flow on the right side of the typhoon center. The water reduction and offshore flow on the left side are strengthened, and the unidirectional VF conservation coupling scheme can greatly improve the operation efficiency and satisfy the requirement of simulation accuracy, and the vorticity force coupling scheme can greatly improve the operation efficiency under the premise of considering the operational efficiency, and the vorticity force coupling scheme is applied to different paths. Both the moving typhoon and the typhoon with different water depth can sensitively reflect the storm surge process, the coupled effect of wave and current, the influence of water level, and the stronger the effect on the fast-moving typhoon and the shallow water depth, the stronger the effect of near-shore wave is. The simulation experiment of Typhoon storm surge floodplain can reflect the basic characteristics of storm surge water increasing and floodplain process. The simulation error is controlled within 20%, and the simulation accuracy is better.
【學(xué)位授予單位】:中國科學(xué)院研究生院(海洋研究所)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:P731.23
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 曹叢華;白濤;高松;徐江玲;曹雅靜;吳玲娟;趙鵬;;膠州灣高分辨率三維風(fēng)暴潮漫灘數(shù)值模擬[J];海洋科學(xué);2013年02期
2 許雪峰;羊天柱;孫志林;施偉勇;聶源;;杭州灣南岸淺灘的漫灘潮流數(shù)值模擬[J];海洋科學(xué);2012年04期
3 WILLIAM Perrie;;The effect of wave-induced radiation stress on storm surge during Typhoon Saomai(2006)[J];Acta Oceanologica Sinica;2011年03期
4 孫璐;黃楚光;蔡偉敘;胡希聲;龍小敏;;熱帶風(fēng)暴GONI活動(dòng)期間南海上層熱結(jié)構(gòu)變化及海浪、風(fēng)暴潮特征分析[J];海洋通報(bào);2011年01期
5 石,;黃厚衡;;0715號(hào)臺(tái)風(fēng)“利奇馬”風(fēng)暴潮分析[J];海洋預(yù)報(bào);2009年01期
6 聞斌;汪鵬;萬雷;張芳苒;;中國近海海域臺(tái)風(fēng)浪模擬試驗(yàn)[J];海洋通報(bào);2008年03期
7 王桂付;秦德生;王云貴;;淺析臺(tái)風(fēng)的生成與發(fā)展規(guī)律[J];武漢航海(武漢航海職業(yè)技術(shù)學(xué)院學(xué)報(bào));2006年04期
8 關(guān)芬呈,于斌,林少奕,夏綜萬;南海北部風(fēng)暴潮數(shù)值計(jì)算中的圓對(duì)稱臺(tái)風(fēng)風(fēng)場(chǎng)模式[J];廣東氣象;2000年S1期
9 吳巍,孫文心;渤海局部海域風(fēng)暴潮漫灘計(jì)算模式──ADI干濕網(wǎng)格模式在渤海局部海域風(fēng)暴潮漫灘計(jì)算中的應(yīng)用[J];青島海洋大學(xué)學(xué)報(bào);1995年02期
10 孫文心,楊宗嚴(yán),史峰巖;風(fēng)暴潮漫灘數(shù)值預(yù)報(bào)模式分析與探討[J];青島海洋大學(xué)學(xué)報(bào);1994年03期
,本文編號(hào):1578648
本文鏈接:http://sikaile.net/kejilunwen/haiyang/1578648.html