北極楚科奇海阿拉斯加沿岸冰間湖及相關的海洋過程分析
本文關鍵詞:北極楚科奇海阿拉斯加沿岸冰間湖及相關的海洋過程分析 出處:《中國海洋大學》2014年碩士論文 論文類型:學位論文
更多相關文章: 冰間湖 海冰密集度 楚科奇海 阿拉斯加 北極 加拿大海盆 鹽躍層
【摘要】:利用2003年至2011年AMSR-E(Advanced Microwave Scanning Radiometer-Earth Observing System)日平均海冰密集度數(shù)據(jù),對楚科奇海阿拉斯加沿岸冰間湖進行了分析。針對冰間湖的特點,在閾值法的基礎上,通過統(tǒng)計無冰水域出現(xiàn)的頻率,限定冰間湖的最大范圍,區(qū)分各個冰間湖。通過計算阿拉斯加沿岸冰間湖的面積,結合NCEP(National Centers for Environmental Prediction)再分析風場數(shù)據(jù)和白令海峽潛標觀測的溫鹽和海流數(shù)據(jù),初步探討冰間湖發(fā)生、發(fā)展的規(guī)律。為了排除海冰外緣區(qū)對判斷冰間湖的影響,研究僅限于白令海峽完全冰封的1月至4月。 阿拉斯加沿岸海域每年冬季都會出現(xiàn)5個冰間湖,,多數(shù)時間為固定于大陸邊緣的沿岸冰間湖,北端在3月和4月會出現(xiàn)位于沿岸固定冰之外的裂縫冰間湖。冰間湖面積每天都發(fā)生變化,表現(xiàn)出天氣尺度的變化特征,經(jīng)歷長達數(shù)日的發(fā)展和消失的過程,與風場的轉換有密切關系。離岸風有利于沿岸冰間湖的擴展,但是該海域1-4月的盛行風為東北風和北風,對于多數(shù)冰間湖而言為沿岸風,不利于冰間湖的形成,因而冰間湖會出現(xiàn)長達數(shù)十日的消失。在偏北風的影響下,太平洋入流對北部的冰間湖幾無作用,而對南部冰間湖的空間分布有著重要影響。 利用NCEP再分析數(shù)據(jù)計算冰間湖海氣界面的熱通量和產(chǎn)鹽量。阿拉斯加沿岸冰間湖冬季感熱熱通量主導著熱平衡。冰間湖表面的熱損失并不是直接取決于冰間開闊水域的面積,而是會受到冰間湖發(fā)生時間以及季節(jié)影響。 冰間湖的每日產(chǎn)鹽量呈現(xiàn)出天氣尺度的變化特征,其變化率十分大。2003年-2011年各年的累計產(chǎn)鹽量總值均為2.8x1012kg左右;但2004年的的總產(chǎn)鹽量高達6.8x1012kg,為其它年份的2倍多。產(chǎn)鹽量與冰間湖面積有密切關系。80%的累計產(chǎn)鹽量都是在一月和二月形成的,這時候,開闊水域面積和每日產(chǎn)鹽量都十分巨大。 結合現(xiàn)場觀測數(shù)據(jù),冰間湖對加拿大海盆鹽躍層結構的變化有著重要影響,這反映在冰間湖產(chǎn)鹽量與加拿大海盆冬季太平洋水鹽度之間的滯后相關性上,前者與后者的滯后時間為1年。進一步通過建立理論模型,計算冰間湖的鹽躍層水產(chǎn)量,2003-2011年冬天阿拉斯加沿岸冰間湖的鹽躍層水產(chǎn)量年平均為0.15±0.1Sv;而理論計算維持加拿大海盆鹽躍層所需的高密度水量為0.2±0.1Sv,因此,阿拉斯加沿岸冰間湖對北極加拿大海盆鹽躍層的形成和維持有著重要貢獻,貢獻率達到75%以上。
[Abstract]:Using AMSR-E from 2003 to 2011 (. Advanced Microwave Scanning Radiometer-Earth Observing system. Daily average sea ice intensity data. This paper analyzes the interglacial lake in Alaska coast of Chukchi Sea. According to the characteristics of the interglacial lake, based on the threshold method, the maximum range of the ice-free lake is limited by counting the frequency of the ice-free waters. The area of the interglacial lake along Alaska's coast is calculated. Combined with NCEP(National Centers for Environmental prediction). The wind field data and the temperature, salt and current data from the Bering Strait submersible survey are analyzed again. In order to exclude the influence of the outer edge of sea ice on judging the interglacial lake, the study is limited to the period from January to April when the Bering Strait is completely frozen. Five interglacial lakes occur every winter in the coastal waters of Alaska, most of the time in coastal interglacial lakes that are fixed on the continental margin. On March and April, there will be a fissure interglacial lake located outside the fixed ice along the coast. The area of the interglacial lake will change every day, showing the characteristics of synoptic scale change, and going through several days of development and disappearance. The offshore wind is favorable to the expansion of the interglacial lake, but the prevailing wind in January and April in this sea area is the northeast wind and the northern wind, and for most of the interglacial lakes, it is the coastal wind. It is not conducive to the formation of the interglacial lake, which will disappear for decades. Under the influence of the northerly wind, the Pacific inflow has little effect on the northern interglacial lake. But it has an important influence on the spatial distribution of the southern interglacial lake. Using the NCEP reanalysis data, the heat flux and salt production at the sea and air interface of the interglacial lake are calculated. The sensible heat flux of the interglacial lake in Alaska dominates the heat balance in winter. The heat loss on the surface of the interglacial lake is not directly dependent on the interglacial lake surface. The area of open water between ice. It will be affected by the time and season of the interglacial lake. The daily salt yield of the interglacial lake shows the characteristics of synoptic scale, and its rate of change is very large. The accumulative total salt yield of each year from 2003 to 2011 is about 2.8 x 1012kg; In 2004, the total salt production reached 6.8x1012kg. The total salt yield of 80% of the total salt production was formed in January and February. At this time, the area of open water and the daily salt production were very large. Combined with the field observation data, the interglacial lake has an important influence on the change of the salt cline structure of the Canadian basin, which is reflected in the lag correlation between the salt yield of the interglacial lake and the salinity of the Pacific Ocean in the Canadian basin in winter. The lag time of the former and the latter is one year. Further, through the establishment of theoretical model, the yield of salt cline water in the interglacial lake is calculated. In the winter of 2003-2011, the average annual water yield of salt cline in the interglacial lake of Alaska was 0.15 鹵0.1 Sv. The theoretical calculation of the high density water required to maintain the salt cline in the Canadian basin is 0.2 鹵0.1 Sv. Therefore, the interglacial lake along the Alaska coast has an important contribution to the formation and maintenance of the salt cline in the Arctic Canadian basin. The contribution rate is more than 75%.
【學位授予單位】:中國海洋大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:P731.15
【相似文獻】
相關期刊論文 前10條
1 付紅麗;趙進平;;白令海冰間湖的數(shù)值模擬及影響模擬準確度的關鍵因素[J];地球科學進展;2009年05期
2 付紅麗;康建軍;李雪;韓桂軍;李威;張學峰;;利用海冰密集度數(shù)據(jù)分析北極冰間湖變化[J];極地研究;2014年02期
3 高郭平,董兆乾;南極威德爾海冰間湖形成機制的研究進展[J];中國海洋大學學報(自然科學版);2004年01期
4 沈忱;扈傳昱;孫維萍;張海生;;南大洋普里茲灣沉積物中鍺的含量與分布[J];極地研究;2013年02期
5 ;[J];;年期
6 ;[J];;年期
7 ;[J];;年期
8 ;[J];;年期
9 ;[J];;年期
10 ;[J];;年期
相關會議論文 前1條
1 張慶華;馬艷;曲媛媛;;南極普里茲灣冰間湖成因的動力學解釋[A];第二十屆全國水動力學研討會文集[C];2007年
相關重要報紙文章 前2條
1 張建松;南極冰間湖不結冰,難道是海留著“喘氣”?[N];新華每日電訊;2008年
2 史久新;南極的默茨冰川與冰間湖[N];中國海洋報;2014年
相關博士學位論文 前1條
1 付紅麗;白令海冰間湖變化規(guī)律及相應的海洋過程研究[D];中國海洋大學;2010年
相關碩士學位論文 前1條
1 梁敏儀;北極楚科奇海阿拉斯加沿岸冰間湖及相關的海洋過程分析[D];中國海洋大學;2014年
本文編號:1383268
本文鏈接:http://sikaile.net/kejilunwen/haiyang/1383268.html