近海海域鐳同位素周期性變化的解析研究
本文關(guān)鍵詞:近海海域鐳同位素周期性變化的解析研究 出處:《中國(guó)地質(zhì)大學(xué)(北京)》2016年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 海底地下水排泄 季節(jié)性變化 平流擴(kuò)散方程 渦動(dòng)擴(kuò)散系數(shù) 鐳同位素
【摘要】:海底地下水排泄(SGD)是全球水循環(huán)的一個(gè)重要組成部分,近年來(lái)成為陸-海相互作用的研究熱點(diǎn)。在評(píng)估SGD、水體滯留時(shí)間和混合速率等方面的各種方法中,鐳同位素方法的應(yīng)用是最為廣泛和成熟的。當(dāng)前對(duì)鐳同位素近海分布的解析研究都建立在穩(wěn)態(tài)模型的基礎(chǔ)上,并且通常不考慮水深和洋流速度。研究者通常利用穩(wěn)態(tài)平流擴(kuò)散方程估計(jì)渦動(dòng)擴(kuò)散系數(shù),進(jìn)而求得SGD。而實(shí)際中鐳同位素在近海的放射性濃度隨高低潮、大小潮和季節(jié)變化非常明顯,此外,因?yàn)榇箨懠芷露群脱罅鞯挠绊?水深的變化和流速對(duì)鐳同位素濃度分布的影響也不能忽略。這樣,上述常用模型就顯示出其不足之處。本研究建立考慮水深變化、流速影響和周期性濃度變化的鐳同位素平流擴(kuò)散模型,討論這三種影響因素在估計(jì)相關(guān)參數(shù)時(shí)所造成的影響,根據(jù)Moore在不同季節(jié)的觀測(cè)數(shù)據(jù),用新的模型估計(jì)渦動(dòng)擴(kuò)散系數(shù),并與穩(wěn)態(tài)模型求得的值進(jìn)行比較。本研究發(fā)現(xiàn)新的模型在估計(jì)近海渦動(dòng)擴(kuò)散系數(shù)和SGD等方面有重要改進(jìn)。反映近海鐳同位素分布時(shí)空變化的平流擴(kuò)散方程由四個(gè)項(xiàng)控制,分別是渦動(dòng)擴(kuò)散項(xiàng)、對(duì)流項(xiàng)、衰變項(xiàng)和時(shí)變項(xiàng)。前兩項(xiàng)表示的是由于海水的渦流和平流所造成的擴(kuò)散,衰變項(xiàng)表示同位素放射性衰變?cè)斐傻挠绊?時(shí)變項(xiàng)表示鐳同位素放射性濃度隨時(shí)間變化所造成的影響。根據(jù)數(shù)據(jù)分析,近海鐳同位素放射性濃度往往在夏天最高,冬天最低,這是由于SGD等的季節(jié)性變化所導(dǎo)致的。Moore在1998到2000年觀測(cè)到Winyah Bay附近海域,223Ra濃度在3dpm/100L上下變化,年變化量在2~3dpm/100L,224Ra和226Ra則在25dpm/100L上下浮動(dòng),季節(jié)性變化達(dá)到了約15dpm/100L,228Ra在35dpm/100L上下浮動(dòng),其變化的范圍則高達(dá)約25dpm/100L。根據(jù)這個(gè)數(shù)值進(jìn)行計(jì)算,對(duì)于長(zhǎng)半衰期的同位素,即226Ra和228Ra,其衰變項(xiàng)很小,這時(shí)時(shí)變項(xiàng)對(duì)方程的影響要比衰變項(xiàng)大2~4個(gè)數(shù)量級(jí),因此如果不考慮時(shí)變項(xiàng),那么利用平流擴(kuò)散方程估計(jì)參數(shù)會(huì)造成很大的誤差。對(duì)223Ra,不考慮季節(jié)性變化估計(jì)參數(shù)的誤差高達(dá)30%,對(duì)224Ra這個(gè)誤差是8%。因此,對(duì)于短半衰期的鐳同位素,季節(jié)性變化也不能忽略。利用鐳的四種同位素的數(shù)據(jù),根據(jù)新模型估計(jì)出Winyah Bay的渦動(dòng)擴(kuò)散系數(shù)是98.5km2/d,而穩(wěn)態(tài)解求出的平均值則為87.7km2/d,新的模型求得的渦動(dòng)擴(kuò)散系數(shù)是穩(wěn)態(tài)模型的1.12倍,這個(gè)結(jié)果表明了新模型與穩(wěn)態(tài)模型的明顯差別,說(shuō)明了在模型中考慮鐳同位素季節(jié)性變化的重要性。
[Abstract]:Submarine groundwater discharge (SGD) is an important part of the global water cycle, in recent years become a hot research topic in land ocean interaction. In the assessment of SGD, various methods of water retention time and mixing rate etc. in the application of radium isotope method is the most widely used and mature. The analytical study the distribution of offshore radium isotopes are based on the steady state model, and are not usually considered the water depth and current velocity. Researchers usually use the steady advection diffusion equation to estimate the eddy diffusion coefficient, and then obtain the SGD. and actual radium isotopes in radioactive concentration near the sea with high tide, tidal and seasonal variation in size is very obvious. In addition, because of the impact of the continental shelf slope and ocean currents, the changes of water depth and flow rate on the impact of radium isotope concentration distribution also cannot be ignored. In this way, the common model shows its disadvantages of this research. In considering the change of water depth, velocity and effect of radium isotope flat periodic concentration flow diffusion model, discuss the impact of these three factors in the estimation of the relevant parameters, according to the Moore observation data in different seasons, estimation of eddy diffusion coefficient with the new model, and compared with the steady-state model is obtained value. This study found that the new model has significant improvement in the estimation of offshore eddy diffusion coefficient and SGD. Reflect the temporal and spatial variation of isotopic distribution of radium offshore advection diffusion equation is controlled by four, respectively is the eddy diffusion, the flow, decay and time varying. Before two is due to the diffusion caused by the vortex flow of the seawater of peace, said the impact of radioactive isotope decay term caused by the time-varying term represents the influence radium isotope radioactive concentration changes with time caused. According to the data analysis, offshore The concentration of radioactive radium isotopes in the summer are the highest, lowest in the winter, this is caused by the seasonal change of SGD and.Moore in 1998 near the sea observed in 2000 Winyah Bay, the 223Ra concentration in 3dpm/100L, annual variation in 2~3dpm/100L, 224Ra and 226Ra were floating down in the 25dpm/100L, seasonal changes to about 15dpm/100L, 228Ra floating down in the 35dpm/100L, the change range is up to about 25dpm/100L. calculated according to this value, the isotope half-life, namely 226Ra and 228Ra, the decay is small, then the time-varying term of equations than decay term 2~4 order of magnitude, so if you don't considering the variable, then the advection diffusion equation of parameter estimation will cause great error. On 223Ra, without considering the seasonal variation of the parameter estimation error of up to 30% of 224Ra this error is 8. Therefore, for short Radium isotope half-life, seasonal changes can not be ignored. By using four kinds of radium isotope data, according to the new Winyah Bay model to estimate the eddy diffusion coefficient is 98.5km2/d, and the average value for the steady-state solution for 87.7km2/d, a new model to obtain the eddy diffusion coefficient is 1.12 times higher than the steady-state model. The results show that the difference between the new model and steady-state model, illustrates the importance of model in senior high school entrance examination into seasonal changes. Radium isotopes
【學(xué)位授予單位】:中國(guó)地質(zhì)大學(xué)(北京)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:P734;P641.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 門武;劉廣山;陳志剛;何建華;尹明端;余雯;;鐳同位素在海洋學(xué)研究中的應(yīng)用及進(jìn)展[J];地球科學(xué)進(jìn)展;2010年01期
2 B·N費(fèi)隆斯基;孫杉;;天然水的同位素及地球與水圈的起源問(wèn)題[J];世界地質(zhì);1982年01期
3 馮軍;沈文慶;曾躍式;馬余剛;王柄;詹文龍;諸永泰;馮恩普;;中能重離子周邊反應(yīng)產(chǎn)物的同位素分布與中子皮、激發(fā)能的關(guān)系[J];高能物理與核物理;1991年04期
4 張芳峰;冶建軍;;硼同位素在地質(zhì)研究中的應(yīng)用狀況[J];內(nèi)蒙古科技與經(jīng)濟(jì);2010年18期
5 營(yíng)俊龍,趙溥云,張宏,郭虹;浙閩沿海殼幔同位素演化軌跡研究[J];地球?qū)W報(bào);1994年Z1期
6 劉濤;不同類型水樣中同位素樣品采集方法淺析[J];地下水;2003年04期
7 許建新;馬海州;肖應(yīng)凱;譚紅兵;李廷偉;孫志國(guó);樊啟順;;穩(wěn)定氯同位素及其應(yīng)用地球化學(xué)研究[J];鹽湖研究;2008年01期
8 尹新民;羅清政;李文新;趙莉莉;孫儒林;孫彤玉;吳定清;;42 MeV/u ~(12)C與~(115)In相互作用的靶余核[J];高能物理與核物理;1993年11期
9 王躍;朱祥坤;;鐵同位素體系及其在礦床學(xué)中的應(yīng)用[J];巖石學(xué)報(bào);2012年11期
10 M.R.Palmer;H.Elderfield;凌文黎;;大西洋新生代有孔蟲鐵錳氧化物覆膜中的稀土元素及釹同位素[J];地質(zhì)科學(xué)譯叢;1988年02期
相關(guān)會(huì)議論文 前4條
1 劉廣山;門武;;黃海和東海的鐳同位素海洋學(xué)[A];第九屆全國(guó)核化學(xué)與放射化學(xué)學(xué)術(shù)研討會(huì)論文摘要集[C];2010年
2 李志紅;朱祥坤;;條帶狀鐵建造型鐵礦的Fe同位素分布特征[A];中國(guó)礦物巖石地球化學(xué)學(xué)會(huì)第12屆學(xué)術(shù)年會(huì)論文集[C];2009年
3 劉廣山;;應(yīng)用γ譜分析的同位素海洋學(xué)研究[A];第十一屆全國(guó)活化分析學(xué)術(shù)會(huì)議論文摘要匯編[C];2006年
4 趙新苗;朱祥坤;張宏福;唐索寒;;Fe同位素在地幔地球化學(xué)研究中的應(yīng)用及進(jìn)展[A];中國(guó)科學(xué)院地質(zhì)與地球物理研究所2008學(xué)術(shù)論文匯編[C];2009年
相關(guān)博士學(xué)位論文 前1條
1 黃康俊;低溫水—巖相互作用過(guò)程中鎂同位素行為研究[D];中國(guó)地質(zhì)大學(xué);2013年
相關(guān)碩士學(xué)位論文 前5條
1 程澤鋒;閃鋅礦鋅同位素和微量元素在巖漿熱液礦床中的初步研究[D];中國(guó)地質(zhì)大學(xué)(北京);2015年
2 李紹z,
本文編號(hào):1361582
本文鏈接:http://sikaile.net/kejilunwen/haiyang/1361582.html