缸內直噴生物柴油轉子發(fā)動機噴霧特性和燃燒過程的研究
發(fā)布時間:2021-06-28 20:15
隨著能源危機和環(huán)境污染的加劇,人們迫切需要更加清潔和高效的新型動力裝置,這使得燃用傳統(tǒng)燃料的發(fā)動機面臨更加嚴峻的挑戰(zhàn)。在此背景下,尋找新型替代燃料以及提高發(fā)動機燃燒效率是應對上述挑戰(zhàn)的兩個最佳途徑。其中,針對第一個途徑即尋找替代燃料,生物柴油作為一種可再生新型燃料,其燃燒做功能力與傳統(tǒng)柴油相當,且能有效降低發(fā)動機排放,是柴油發(fā)動機的理想替代燃料之一。針對第二個途徑即提高發(fā)動機燃燒效率,除了繼續(xù)研究如何提高傳統(tǒng)往復式發(fā)動機效率外,人們也在嘗試發(fā)明和改進其它新型的發(fā)動機來提高燃料燃燒效率。在新型內燃機中,轉子發(fā)動機相比傳統(tǒng)往復式發(fā)動機,具有質量輕、功重比高、運行平穩(wěn)等先天優(yōu)勢,使其成為往復式發(fā)動機的替代者之一。綜上可以看出:燃用生物柴油的轉子發(fā)動機能結合生物柴油和轉子發(fā)動機兩者的優(yōu)勢,是一種具有廣闊前景的新型高效動力裝置。但是,轉子發(fā)動機的結構和運行方式與往復式發(fā)動機不同,這導致缸內的混合氣運動和燃燒過程也不同,其狹長的燃燒室會導致火焰在傳播過程中容易出現(xiàn)淬熄而增加殘留的未燃烴。當燃用生物柴油時,生物柴油較慢的霧化蒸發(fā)速度會進一步加劇這一問題,而目前關于生物柴油轉子發(fā)動機工作過程的基礎研究...
【文章來源】:江蘇大學江蘇省
【文章頁數(shù)】:196 頁
【學位級別】:博士
【文章目錄】:
DEDICATION
ABSTRACT
摘要
NOMENCLATURE
Chapter 1 Introduction
1.1 Background
1.2 Working Principle of Rotary Engine
1.3 Characteristics of Rotary Engine
1.4 Difference between rotary and reciprocating engines
1.5 Advantages and Disadvantages of Wankel Rotary Engine with respect to Reciprocating Engine
1.5.1 Advantages of Wankel Rotary Engine over Reciprocating Engine
1.5.2 Disadvantages of Wankel Rotary Engine over Reciprocating Engine
1.6 Rotary engine development and application status
1.6.1 Development and application in China
1.6.2 Development and application indifferent countries at present
1.7 Biodiesel as fuel in internal combustion(IC)engine
1.7.1 Biodiesel production
1.7.2 Characteristics of biodiesel fueled rotary engine
1.7.3 Advantages of biodiesel fueled rotary engine
1.8 Chapter Conclusions
Chapter 2 Literature Review
2.1 Introduction and Background
2.2 Technical-conventional Rotary Engines
2.2.1 Applications other than to Automobiles
2.3 Techniques for improving engine performance
2.3.1 Optimizing Ignition Parameters
2.3.2 Optimizing Injection Parameters
2.4 Types of fuels and utilization methods in Rotary Engine for performance improvement
2.4.1 Single fuel component
2.4.1.1 Hydrogen
2.4.1.2 Natural gas
2.4.1.3 Liquefied petroleum gas(LPG)
2.4.1.4 Diesel
2.4.1.5 Compressed air
2.4.1.6 Kerosene
2.4.2 Multi fuel component
2.4.2.1 Hydrogen and Gasoline
2.4.2.2 Hydrogen and Alcohol
2.4.2.3 Hydrogen and Natural gas
2.4.2.4 Natural gas and Diesel
2.5 Present and Future of Rotary IC engines
2.5.1 Emissions:the technology enforcer
2.5.2 Tomorrows Rotary Engine
2.6 Summary of research gaps
2.7 Research motivation
2.7.1 Bio-fuels:a prudent step
2.7.2 Why Bio-diesel
2.8 Purposes of the Research
2.9 Content of Thesis
2.10 Chapter Conclusions
Chapter 3 Research Methodology
3.1 Spray Experimental Set-up
3.1.1 Constant volume vessel
3.1.2Optical diagnostic and Image processing
3.1.3 Fuel properties
3.2 Simulation Methodology
3.2.1 Simulation Geometric model generation and meshing of DIRE
3.2.2 Numerical/Computing models selection
3.2.3 Boundary conditions
3.3 Numerical/Computing Models and Model validation
3.3.1 Turbulence model
3.3.1.1 Turbulence energy
3.3.1.2 Turbulence dissipation rate
3.3.2 Discrete Phase Model
3.3.3 Combustion model
3.3.4 NOx model
3.3.4.1 Thermal NOx
3.3.4.2 Prompt NOx
3.3.5 Soot Model
3.3.6 Validation of model
3.4 Conclusions
Chapter 4 Study on spray characteristics and influence factors of combustion process in a biodiesel fueled direct injection rotary engine
4.1 Spray under inert conditions
4.1.1 Liquid spray penetration length(SL)characteristics
4.1.2 Spray cone angle characteristics
4.1.3 Spray pattern(SP)characteristics
4.2 Compression stage Air-Fuel mixture formation at different chamber conditions
4.3 Conclusions
Chapter 5 Effect of injection timing on mixture formation and combustion process in a direct injection rotary engine(DIRE)fueled with biodiesel
5.1 Compression Stage Air Flow Analysis
5.2 Compression stage Air-Fuel movement process Analysis
5.2.1 Start stage Air-Fuel movement process at100°CA BTDC injection timing
5.2.2 Middle stage Air-Fuel movement process at80°CA BTDC injection timing
5.2.3 Final stage Air-Fuel movement process at60°CA BTDC injection timing
5.3 Analysis of combustion process
5.4 Analysis of major emissions
5.5 Conclusions
Chapter 6 Effect of advance ignition timing on mixture formation and combustion process in a direct injection rotary engine(DIRE)fueled with biodiesel
6.1 Compression Stage Air Flow Analysis
6.2 Compression stage Air-Fuel movement process Analysis at80°CA(BTDC)injection timing
6.3 Effects of advance spark timing on combustion process at80°CA(BTDC)injection timing
6.4 Conclusions
Chapter 7 Effect of equivalence ratio on combustion process in a direct injection rotary engine(DIRE)fueled with biodiesel
7.1 Pressure
7.2 Chamber Temperature
7.3 Combustion process analysis
7.4 Analysis of Emissions
7.5 Conclusions
Chapter 8 Conclusion and recommendations
8.1 Summary of thesis
8.2 Recommendations for future work
References
Acknowledgements
Publications
APPENDIX
Appendix A
【參考文獻】:
期刊論文
[1]配氣相位對三角轉子氣動發(fā)動機性能的影響[J]. 潘劍鋒,肖曼,范寶偉,潘振華. 江蘇大學學報(自然科學版). 2016(02)
[2]進氣相位對天然氣轉子發(fā)動機流場和燃燒過程的影響[J]. 范寶偉,潘劍鋒,唐愛坤,潘振華,薛宏. 農(nóng)業(yè)機械學報. 2015(07)
[3]點火位置對天然氣轉子發(fā)動機燃燒的影響[J]. 潘劍鋒,范寶偉,陳瑞,盧青波,唐愛坤,邵霞,王謙. 內燃機工程. 2013(01)
[4]世界能源現(xiàn)狀與內燃機的發(fā)展機遇[J]. 朱劍明,彭代勇. 內燃機工程. 2011(02)
[5]轉子發(fā)動機偏心軸結構設計及強度校核[J]. 管勝榮,張俊義,張志清,趙潤增. 小型內燃機與摩托車. 2010(03)
[6]STRATEGY FOR DIESEL ROTARY ENGINE WITH COMMON RAIL INJECTION SYSTEM[J]. WU Jinjun HAI Jingtao SHI Jianzhong China Academy of Machinery Science and Technology, Beijing 100044, China LI Xuesong YANG Qing WANG Shangyong Department of Vehicle Engineering, Beijing Institute of Technology, Beijing 100081, China. Chinese Journal of Mechanical Engineering. 2006(03)
本文編號:3254980
【文章來源】:江蘇大學江蘇省
【文章頁數(shù)】:196 頁
【學位級別】:博士
【文章目錄】:
DEDICATION
ABSTRACT
摘要
NOMENCLATURE
Chapter 1 Introduction
1.1 Background
1.2 Working Principle of Rotary Engine
1.3 Characteristics of Rotary Engine
1.4 Difference between rotary and reciprocating engines
1.5 Advantages and Disadvantages of Wankel Rotary Engine with respect to Reciprocating Engine
1.5.1 Advantages of Wankel Rotary Engine over Reciprocating Engine
1.5.2 Disadvantages of Wankel Rotary Engine over Reciprocating Engine
1.6 Rotary engine development and application status
1.6.1 Development and application in China
1.6.2 Development and application indifferent countries at present
1.7 Biodiesel as fuel in internal combustion(IC)engine
1.7.1 Biodiesel production
1.7.2 Characteristics of biodiesel fueled rotary engine
1.7.3 Advantages of biodiesel fueled rotary engine
1.8 Chapter Conclusions
Chapter 2 Literature Review
2.1 Introduction and Background
2.2 Technical-conventional Rotary Engines
2.2.1 Applications other than to Automobiles
2.3 Techniques for improving engine performance
2.3.1 Optimizing Ignition Parameters
2.3.2 Optimizing Injection Parameters
2.4 Types of fuels and utilization methods in Rotary Engine for performance improvement
2.4.1 Single fuel component
2.4.1.1 Hydrogen
2.4.1.2 Natural gas
2.4.1.3 Liquefied petroleum gas(LPG)
2.4.1.4 Diesel
2.4.1.5 Compressed air
2.4.1.6 Kerosene
2.4.2 Multi fuel component
2.4.2.1 Hydrogen and Gasoline
2.4.2.2 Hydrogen and Alcohol
2.4.2.3 Hydrogen and Natural gas
2.4.2.4 Natural gas and Diesel
2.5 Present and Future of Rotary IC engines
2.5.1 Emissions:the technology enforcer
2.5.2 Tomorrows Rotary Engine
2.6 Summary of research gaps
2.7 Research motivation
2.7.1 Bio-fuels:a prudent step
2.7.2 Why Bio-diesel
2.8 Purposes of the Research
2.9 Content of Thesis
2.10 Chapter Conclusions
Chapter 3 Research Methodology
3.1 Spray Experimental Set-up
3.1.1 Constant volume vessel
3.1.2Optical diagnostic and Image processing
3.1.3 Fuel properties
3.2 Simulation Methodology
3.2.1 Simulation Geometric model generation and meshing of DIRE
3.2.2 Numerical/Computing models selection
3.2.3 Boundary conditions
3.3 Numerical/Computing Models and Model validation
3.3.1 Turbulence model
3.3.1.1 Turbulence energy
3.3.1.2 Turbulence dissipation rate
3.3.2 Discrete Phase Model
3.3.3 Combustion model
3.3.4 NOx model
3.3.4.1 Thermal NOx
3.3.4.2 Prompt NOx
3.3.5 Soot Model
3.3.6 Validation of model
3.4 Conclusions
Chapter 4 Study on spray characteristics and influence factors of combustion process in a biodiesel fueled direct injection rotary engine
4.1 Spray under inert conditions
4.1.1 Liquid spray penetration length(SL)characteristics
4.1.2 Spray cone angle characteristics
4.1.3 Spray pattern(SP)characteristics
4.2 Compression stage Air-Fuel mixture formation at different chamber conditions
4.3 Conclusions
Chapter 5 Effect of injection timing on mixture formation and combustion process in a direct injection rotary engine(DIRE)fueled with biodiesel
5.1 Compression Stage Air Flow Analysis
5.2 Compression stage Air-Fuel movement process Analysis
5.2.1 Start stage Air-Fuel movement process at100°CA BTDC injection timing
5.2.2 Middle stage Air-Fuel movement process at80°CA BTDC injection timing
5.2.3 Final stage Air-Fuel movement process at60°CA BTDC injection timing
5.3 Analysis of combustion process
5.4 Analysis of major emissions
5.5 Conclusions
Chapter 6 Effect of advance ignition timing on mixture formation and combustion process in a direct injection rotary engine(DIRE)fueled with biodiesel
6.1 Compression Stage Air Flow Analysis
6.2 Compression stage Air-Fuel movement process Analysis at80°CA(BTDC)injection timing
6.3 Effects of advance spark timing on combustion process at80°CA(BTDC)injection timing
6.4 Conclusions
Chapter 7 Effect of equivalence ratio on combustion process in a direct injection rotary engine(DIRE)fueled with biodiesel
7.1 Pressure
7.2 Chamber Temperature
7.3 Combustion process analysis
7.4 Analysis of Emissions
7.5 Conclusions
Chapter 8 Conclusion and recommendations
8.1 Summary of thesis
8.2 Recommendations for future work
References
Acknowledgements
Publications
APPENDIX
Appendix A
【參考文獻】:
期刊論文
[1]配氣相位對三角轉子氣動發(fā)動機性能的影響[J]. 潘劍鋒,肖曼,范寶偉,潘振華. 江蘇大學學報(自然科學版). 2016(02)
[2]進氣相位對天然氣轉子發(fā)動機流場和燃燒過程的影響[J]. 范寶偉,潘劍鋒,唐愛坤,潘振華,薛宏. 農(nóng)業(yè)機械學報. 2015(07)
[3]點火位置對天然氣轉子發(fā)動機燃燒的影響[J]. 潘劍鋒,范寶偉,陳瑞,盧青波,唐愛坤,邵霞,王謙. 內燃機工程. 2013(01)
[4]世界能源現(xiàn)狀與內燃機的發(fā)展機遇[J]. 朱劍明,彭代勇. 內燃機工程. 2011(02)
[5]轉子發(fā)動機偏心軸結構設計及強度校核[J]. 管勝榮,張俊義,張志清,趙潤增. 小型內燃機與摩托車. 2010(03)
[6]STRATEGY FOR DIESEL ROTARY ENGINE WITH COMMON RAIL INJECTION SYSTEM[J]. WU Jinjun HAI Jingtao SHI Jianzhong China Academy of Machinery Science and Technology, Beijing 100044, China LI Xuesong YANG Qing WANG Shangyong Department of Vehicle Engineering, Beijing Institute of Technology, Beijing 100081, China. Chinese Journal of Mechanical Engineering. 2006(03)
本文編號:3254980
本文鏈接:http://sikaile.net/kejilunwen/dongligc/3254980.html
最近更新
教材專著