輪轂及隔板型式對旋轉(zhuǎn)沖壓壓縮轉(zhuǎn)子性能的影響研究
[Abstract]:In order to improve the performance of gas turbine, the development of supersonic / transonic compressor is very important. Rotary press compression rotor is a new type of supersonic compressor rotor which compresses the incoming flow by shock wave. It has the advantages of high single-stage pressure ratio, simple structure, light weight, small volume and so on. In order to improve the overall performance of rotary press compression rotor and obtain the influence mechanism of different wheel hub and partition type on the flow inside the runner, different modification schemes are obtained by changing the wheel hub and partition type. Numerical method is used to study the modification scheme with different wheel hub and partition type. Firstly, different modification schemes are obtained by changing the compression surface, changing the shape of the diffuser along the flow direction and synthetically changing the hub type. The results show that changing the shape of compression surface along the direction of flow can change the shape of shock wave and reduce the loss of shock wave, but it can not obviously improve the overall performance of rotary press compression rotor. The shape of the flow direction of the diffuser surface has a certain influence on the performance of the rotary press compression rotor. When the length is the same, with the decrease of the initial expansion angle, the overall performance of the rotor, such as the booster ratio, the efficiency and so on, will be improved to a certain extent. But the whole ascension is not obvious; Under the condition of the same initial expansion angle, increasing the length of the bearing section can increase the booster ratio of the rotary stamping compression rotor, while increasing the length of the diffuser surface can improve the efficiency and the total pressure recovery coefficient. Local modification of hub type can not obviously improve the overall performance of rotary press compression rotor. Secondly, different modification schemes are obtained by changing the front and back segments of the baffle and synthetically changing the type of the diaphragm of the rotary press compression rotor, and the numerical study is carried out on them. It is found that changing the type of the front section of the baffle can change the shock wave of the front edge of the diaphragm, and then change the inlet air flow rate and the incoming flow quality of the rotary punching compression rotor, enhance the pressurization capacity of the rotary punching compression rotor and reduce the flow loss inside the channel. It has a positive effect on the overall performance of rotary press compression rotor. The separation condition at the outlet of the left septum of the rotary press compression rotor can be changed by changing the type of the posterior section of the partition, and the separation condition of each scheme is gradually improved with the moving back of the starting point of the tail edge. However, there is a maximum supercharging capacity point in the process of moving backward at the starting point of the tail edge, beyond which the airflow will inflate at the outlet of the right diaphragm, which will seriously affect the turbocharging capacity of the rotary press compression rotor. A good modification can also be obtained by folding the left partition into the inner of the runner. Under the condition of considering the influence of the front and back section of the diaphragm on the rotary press compression rotor and ensuring the strength of the partition board, a better modification scheme can be obtained by comprehensive modification of the partition plate.
【學(xué)位授予單位】:大連海事大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TK473
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 施維新;大容量發(fā)電機(jī)轉(zhuǎn)子的平衡 大容量發(fā)電機(jī)轉(zhuǎn)子在電廠內(nèi)的平衡[J];熱力發(fā)電;1976年06期
2 單成武;;轉(zhuǎn)子造型工藝的改進(jìn)[J];四川機(jī)械;1981年04期
3 夏松波,宋鴻仁;熱套盤鼓式轉(zhuǎn)子振動特性的研究[J];動力工程;1983年05期
4 盛惠渝,孫伯濤,李斐,牛秀云;轉(zhuǎn)子強(qiáng)度整體求解的有限元柔度計(jì)算法[J];航空動力學(xué)報;1987年03期
5 胡春雷;彭友元;;異步電動機(jī)閉口槽的磁場和電抗計(jì)算[J];中小型電機(jī);1982年02期
6 朱欽榮,黃秉權(quán);汽輪機(jī)轉(zhuǎn)子的松弛法直軸[J];華東電力;1992年05期
7 薛冰;胡X;樊貝;;不同轉(zhuǎn)子結(jié)構(gòu)無刷雙饋電動機(jī)的仿真研究[J];工礦自動化;2012年01期
8 高伯誠;;關(guān)于彎曲轉(zhuǎn)子的振動問題[J];電力技術(shù);1983年05期
9 葛振興;;計(jì)數(shù)氣動發(fā)動機(jī)轉(zhuǎn)子的轉(zhuǎn)數(shù)[J];鑿巖機(jī)械與風(fēng)動工具;1988年01期
10 李燦根;轉(zhuǎn)子剛度和支承剛度的匹配[J];汽輪機(jī)技術(shù);1989年02期
相關(guān)會議論文 前5條
1 王京剛;蓋國勝;陳炳辰;;轉(zhuǎn)子結(jié)構(gòu)對分級性能影響的研究[A];第四屆全國顆粒制備與處理學(xué)術(shù)會議論文集[C];1995年
2 郭青林;溫泉;;外燃四端口通流波轉(zhuǎn)子性能與結(jié)構(gòu)設(shè)計(jì)研究[A];第十五屆中國科協(xié)年會第13分會場:航空發(fā)動機(jī)設(shè)計(jì)、制造與應(yīng)用技術(shù)研討會論文集[C];2013年
3 楊凌;鐘兢軍;韓吉昂;嚴(yán)紅明;;旋轉(zhuǎn)沖壓壓縮轉(zhuǎn)子喉部長高比的研究[A];中國航空學(xué)會第七屆動力年會論文摘要集[C];2010年
4 張文明;孟光;;MEMS旋轉(zhuǎn)機(jī)械微轉(zhuǎn)子結(jié)構(gòu)的材料選用研究[A];第9屆全國轉(zhuǎn)子動力學(xué)學(xué)術(shù)討論會ROTDYN'2010論文集[C];2010年
5 高晨光;趙麗濱;房建成;;復(fù)合材料儲能飛輪轉(zhuǎn)子結(jié)構(gòu)有限元計(jì)算研究[A];北京力學(xué)學(xué)會第12屆學(xué)術(shù)年會論文摘要集[C];2006年
相關(guān)博士學(xué)位論文 前8條
1 陳學(xué)珍;新型ALA+SPM組合式轉(zhuǎn)子電機(jī)設(shè)計(jì)及實(shí)驗(yàn)研究[D];華中科技大學(xué);2011年
2 張昆鵬;轉(zhuǎn)子系統(tǒng)的降維及非線性動力學(xué)研究[D];天津大學(xué);2011年
3 費(fèi)鐘秀;復(fù)雜轉(zhuǎn)子耦合系統(tǒng)有限元建模及其動力特性研究[D];浙江大學(xué);2013年
4 張震;組合轉(zhuǎn)子強(qiáng)化傳熱機(jī)理及性能研究[D];北京化工大學(xué);2014年
5 陳學(xué)珍;新型ALA+SPM合式轉(zhuǎn)子電機(jī)設(shè)計(jì)及實(shí)驗(yàn)研究[D];華中科技大學(xué);2011年
6 賀威;復(fù)雜轉(zhuǎn)子系統(tǒng)瞬態(tài)熱振動及碰摩故障的動力學(xué)特性研究[D];東北大學(xué);2012年
7 許國瑞;用于電力系統(tǒng)穩(wěn)定分析的同步發(fā)電機(jī)數(shù)學(xué)模型研究[D];華北電力大學(xué);2014年
8 朱常青;磁通可控的復(fù)合轉(zhuǎn)子永磁同步電動機(jī)研究[D];山東大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 付圓寧;滾子軸承—轉(zhuǎn)子系統(tǒng)動力學(xué)分析[D];昆明理工大學(xué);2015年
2 汪廷飛;差速嚙合轉(zhuǎn)子混合設(shè)備研制[D];北京化工大學(xué);2015年
3 何長江;組合轉(zhuǎn)子阻垢特性理論及實(shí)驗(yàn)研究[D];北京化工大學(xué);2015年
4 李彥紅;轉(zhuǎn)子—軸承系統(tǒng)非線性振動及分岔特性研究[D];蘭州交通大學(xué);2015年
5 孫云;輪轂及隔板型式對旋轉(zhuǎn)沖壓壓縮轉(zhuǎn)子性能的影響研究[D];大連海事大學(xué);2016年
6 程燁;往復(fù)式脈沖器轉(zhuǎn)子水力特性研究[D];浙江大學(xué);2014年
7 李娜;微型燃?xì)廨啓C(jī)軸承—轉(zhuǎn)子系統(tǒng)耦合及非線性動特性分析[D];沈陽工業(yè)大學(xué);2008年
8 單小磊;裂紋磁懸浮轉(zhuǎn)子系統(tǒng)動力學(xué)研究[D];蘭州交通大學(xué);2013年
9 馬昆;雙轉(zhuǎn)子混煉機(jī)轉(zhuǎn)子結(jié)構(gòu)對固體粉末摻混性能影響的研究[D];北京化工大學(xué);2014年
10 郝龍;新型高速透平發(fā)電機(jī)轉(zhuǎn)子結(jié)構(gòu)穩(wěn)定性試驗(yàn)研究[D];華北電力大學(xué);2014年
,本文編號:2347422
本文鏈接:http://sikaile.net/kejilunwen/dongligc/2347422.html