基于CEEMD樣本熵的柴油機(jī)故障診斷研究
[Abstract]:As a kind of common complex power machinery, diesel engine is widely used in vehicles, aircraft, ships and other vehicles. It has the characteristics of high efficiency and high specific power. Whether the whole power system can operate safely and reliably is affected by many factors, and the working condition of diesel engine is one of them. Therefore, it is of great practical value to improve the monitoring and fault diagnosis technology of diesel engine. The state information of the internal parts of a diesel engine is reflected in the vibration of the cylinder head through a certain channel, so it is an effective method to diagnose the fault of the diesel engine by the vibration signal of the cylinder head. The research of this subject mainly includes how to extract the fault characteristic information from the vibration signal of the cylinder head of diesel engine effectively and to diagnose and identify the fault state of the diesel engine. A new method of diesel engine fault diagnosis based on CEEMD- sample entropy is put forward. The main works of this paper are as follows: (1) an experimental platform for measuring vibration signals of diesel engine cylinder head is designed and constructed. Taking CZ4110 diesel engine as an example, the vibration signal data of cylinder head of the diesel engine under different working conditions (including normal and abnormal states) are collected. On the basis of the data, it can be used to extract the vibration signal characteristics of diesel engine cylinder head and to study the fault diagnosis. (2) the cause of diesel engine failure and the propagation channel are studied. The characteristics of cylinder head vibration signal under different faults of diesel engine are analyzed by means of theoretical analysis and experimental verification, starting with time domain and frequency domain. The characteristics of cylinder head vibration signal in diesel engine are revealed in this paper. (3) the application of empirical mode EMD decomposition principle in signal decomposition field is studied, and the problem of mode aliasing in the process of EMD signal decomposition is discussed. The EEMD and CEEMD decomposition methods with noise auxiliary function are introduced. The experimental results show that the two methods can suppress the mode aliasing to a certain extent and the method is effective. The experiment also proves that CEEMD can decompose the signal to different time scales to extract the local information of the signal. A denoising method combining CEEMD and wavelet is proposed, that is, the signal is decomposed by CEEMD, then each IMF is de-noised by wavelet, and then the IMF is reconstructed as the final de-noising signal. Experimental results show that the proposed method is effective in noise reduction. (4) sample entropy is introduced to measure signal complexity and nonlinearity, and it is applied to measure the complexity of vibration sequence in diesel engine when fault occurs. The analysis shows that the sample entropy is consistent and affected by parameters. In selecting the IMF component, the selection is based on the magnitude of the correlation between the IMF component and the original signal. For the cylinder head signal of diesel engine, the information of cylinder head vibration signal in different frequency bands is obtained by quantizing the IMF component decomposed by CEEMD with sample entropy, which is regarded as the input vector of pattern recognition. (5) the entropy of IMF samples decomposed by CEEMD is used as feature vector to input support vector machine to train diesel engine fault samples, and compared with other diagnosis methods, the accuracy is improved. The application of principal component analysis (PCA) principle in fault feature dimensionality reduction is studied. Through further comparative diagnosis experiments, it is proved that this method not only effectively preserves fault feature information, but also removes redundant components. More accurate diagnosis information is obtained, and the method of CEEMD- sample entropy can be used to identify diesel engine fault.
【學(xué)位授予單位】:江蘇科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TK428
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 曹龍漢,曹長修,孫穎楷,景有泉,郭振;柴油機(jī)故障診斷技術(shù)的現(xiàn)狀及展望[J];重慶大學(xué)學(xué)報(自然科學(xué)版);2001年06期
2 胡木水;柴油機(jī)故障診斷方法[J];中國水運(yùn);2002年05期
3 王珍,丁子佳,李玉光,李吉;局域波自回歸譜及其在柴油機(jī)故障診斷中的應(yīng)用研究[J];內(nèi)燃機(jī)工程;2004年03期
4 張維新,張俊峰;柴油機(jī)故障診斷技術(shù)趨向分析[J];天津航海;2005年02期
5 臧剛權(quán);楊文位;;柴油機(jī)故障診斷技術(shù)方法綜述[J];農(nóng)業(yè)機(jī)械化與電氣化;2006年06期
6 楊文位;;柴油機(jī)故障診斷的現(xiàn)代方法與展望[J];農(nóng)機(jī)使用與維修;2007年01期
7 劉輝;周志英;;基于動態(tài)模糊矩陣的柴油機(jī)故障診斷[J];煤炭技術(shù);2007年08期
8 王德洪;;柴油機(jī)故障診斷的幾點體會[J];裝備制造技術(shù);2008年01期
9 馬善偉;樂正偉;呂健;劉峗;;柴油機(jī)故障診斷技術(shù)綜述[J];上海第二工業(yè)大學(xué)學(xué)報;2008年02期
10 霍本林;;柴油機(jī)故障診斷系統(tǒng)的研究[J];科技創(chuàng)新導(dǎo)報;2010年29期
相關(guān)會議論文 前3條
1 段偉武;宋宜斌;;基于自適應(yīng)神經(jīng)網(wǎng)絡(luò)模糊推理系統(tǒng)的柴油機(jī)故障診斷[A];第二十九屆中國控制會議論文集[C];2010年
2 王鑫;于洪亮;段樹林;宋玉超;;基于遺傳算法選擇優(yōu)化神經(jīng)網(wǎng)絡(luò)的柴油機(jī)故障診斷研究[A];2011下一代自動測試系統(tǒng)學(xué)術(shù)研討會論文集[C];2011年
3 王鑫;于洪亮;段樹林;宋玉超;;基于遺傳算法選擇優(yōu)化神經(jīng)網(wǎng)絡(luò)的柴油機(jī)故障診斷研究[A];第十屆全國振動理論及應(yīng)用學(xué)術(shù)會議論文集(2011)上冊[C];2011年
相關(guān)博士學(xué)位論文 前3條
1 王珍;基于局域波分析的柴油機(jī)故障診斷方法的研究及應(yīng)用[D];大連理工大學(xué);2002年
2 李宏坤;基于信息融合技術(shù)船舶柴油機(jī)故障診斷方法的研究與應(yīng)用[D];大連理工大學(xué);2003年
3 蔡曉光;柴油機(jī)智能故障診斷系統(tǒng)研究[D];中國礦業(yè)大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 沈紹輝;基于人工蜂群算法優(yōu)化支持向量機(jī)的柴油機(jī)故障診斷研究[D];中北大學(xué);2016年
2 陳晗;基于信息融合的柴油機(jī)故障診斷研究[D];江蘇科技大學(xué);2016年
3 儲維;基于CEEMD樣本熵的柴油機(jī)故障診斷研究[D];江蘇科技大學(xué);2015年
4 馮陽;故障樹分析和模糊理論在柴油機(jī)故障診斷中的應(yīng)用[D];北京理工大學(xué);2008年
5 宋棟;基于嵌入式的柴油機(jī)故障診斷系統(tǒng)[D];中北大學(xué);2012年
6 王晉;基于粒子濾波信號處理的柴油機(jī)故障診斷[D];中北大學(xué);2012年
7 韓慧勇;基于多源信息融合的柴油機(jī)故障診斷研究[D];中北大學(xué);2012年
8 劉崢;基于多傳感器信息融合的柴油機(jī)故障診斷系統(tǒng)[D];湖南大學(xué);2010年
9 郭鋼祥;基于局域均值分解和神經(jīng)網(wǎng)絡(luò)的柴油機(jī)故障診斷研究[D];中北大學(xué);2013年
10 劉曉東;基于粗糙集的柴油機(jī)故障診斷的研究[D];大連交通大學(xué);2008年
,本文編號:2268276
本文鏈接:http://sikaile.net/kejilunwen/dongligc/2268276.html