管內(nèi)波流螺旋自動清洗技術(shù)及傳熱性能研究
[Abstract]:As an important means to realize on-line cleaning and heat transfer enhancement of tubular heat exchangers, inserted steel wire helical coils have certain engineering application value in the field of energy saving. On the basis of inserting the working screw into the heat transfer pipe, this paper puts forward the method of combining the fluctuating inlet velocity with the moving spiral in the tube and using the wave current to drive the working screw reciprocating motion. The main contents of the paper are as follows: (1) the technology of wave flow spiral automatic cleaning and the feasibility of heat transfer enhancement are analyzed. Based on the feasibility of wave and current spiral automatic cleaning technology, the necessary and sufficient condition is that the working screw reciprocating travel must be more than one pitch of itself, so the force of the working screw in the pipe is analyzed theoretically and along the axial direction in the pipe. The axial impact force of the working screw is balanced with the axial force of the flexible spring, and the method of calculating the inlet velocity of the helix is derived, which enables the screw to realize reciprocating motion. A valve control device for changing constant velocity to fluctuating velocity is proposed. The practical feasibility of the wave and current generation is verified. (2) the axial elongation of the helix under different inlet velocity and four different parameters working helices are studied experimentally by setting up an experimental platform. The results show that the working helix with different parameters has different starting velocity, and the distance of axial translation of the working helix under different velocity of velocity is different, which verifies that the working spiral under the action of wave and current can realize reciprocating motion. The initial velocity of the working spiral under the action of wave and current should be larger than the starting velocity of the spiral, and the magnitude of the wave velocity should be determined by the distance between the elastic coefficient of the flexible spring and the reciprocating movement of the working spiral, and the smaller the elastic coefficient of the flexible spring is, The wave amplitude of the constructed inlet wave velocity can be smaller. (3) numerical simulation analysis is carried out on the cleaning ability and heat transfer performance of the wave-current spiral in the tube. The simulation results show that the larger the inlet velocity, the longer the helical length and the greater the axial force on the helix. The drag coefficient decreases with the increase of inlet velocity and the length of spiral in fluid. The numerical simulation of the influence of wave velocity on the flow and heat transfer of air pipe shows that when the frequency of wave flow velocity changes to a certain extent, the static pressure at the outlet of the tube will be greater than the static pressure at the inlet, and the fluid will return back. Based on the image of the time varying of the comprehensive performance evaluation factor in the tube, it is shown that the wave and current can enhance the heat transfer in the tube under the action of the studied parameters of the velocity of wave and current. An orthogonal experimental table was established to analyze the effects of three parameters of wave and current: initial velocity, vibration frequency and amplitude of velocity on the enhancement of heat transfer and cleaning ability of an interpolated spiral heat exchanger tube. The order of importance of three factors to the heat transfer efficiency was as follows: initial velocity. The change of vibration frequency, velocity amplitude, wave and current velocity between 0.1~2m/s can enhance heat transfer, the order of importance of three factors on cleaning ability is as follows: velocity amplitude, initial velocity, vibration frequency, With the flexible spring with different elastic coefficients, the interpolated working spiral under the action of wave and current can realize the automatic cleaning effect. The factor analysis of cleaning ability is to make the reciprocating stroke of the working screw reach the value of axial force fluctuation of more than one pitch as the standard, and qualitatively study the strength of cleaning ability under the action of wave and current. Through the quantitative analysis of the heat transfer enhancement ability, the evaluation factor of the comprehensive performance in the tube is taken as the evaluation index.
【學(xué)位授予單位】:湘潭大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TK172
【相似文獻】
相關(guān)期刊論文 前10條
1 侯建方;通電螺旋管周圍任意點猊向量的計算[J];低壓電器;1986年05期
2 王琪;金屬螺旋管的拉制[J];機械工人.冷加工;1998年08期
3 朱建國,仇性啟;螺旋管技術(shù)研究[J];工業(yè)加熱;2004年01期
4 湛含輝;朱輝;;螺旋管內(nèi)迪恩渦運動的數(shù)值模擬[J];熱能動力工程;2011年01期
5 肖峰;王秋雷;葉玲麗;;中空消音螺旋管擠出模設(shè)計[J];模具工業(yè);2011年07期
6 李朝陽;馬貴陽;徐柳;;螺旋管內(nèi)流場數(shù)值模擬[J];遼寧石油化工大學(xué)學(xué)報;2011年03期
7 馮凱;鐘建華;唐治立;;多頭螺旋管換熱過程的三維數(shù)值模擬[J];有色金屬科學(xué)與工程;2012年03期
8 朱宏曄;楊星團;居懷明;姜勝耀;;氦氣沖刷螺旋管束傳熱的數(shù)值研究[J];熱科學(xué)與技術(shù);2012年03期
9 哈桑;;特殊結(jié)構(gòu)螺旋管風(fēng)口的設(shè)計[J];重型機械;1980年01期
10 ;薄壁螺旋管[J];中國鄉(xiāng)鎮(zhèn)企業(yè)信息;1995年19期
相關(guān)會議論文 前9條
1 周維;張國鴻;閻小康;;離心式螺旋管構(gòu)件熱交換器流體力學(xué)分析報告[A];中國制冷學(xué)會2005年制冷空調(diào)學(xué)術(shù)年會論文集[C];2005年
2 鄭之初;吳應(yīng)湘;李清平;郭軍;張軍;唐馳;龔道童;;復(fù)合式分離器研究[A];中國力學(xué)學(xué)會學(xué)術(shù)大會'2005論文摘要集(下)[C];2005年
3 王克亮;崔海清;吳輔兵;鄭曉松;;螺旋管道內(nèi)冪律流體流動壓力梯度的計算[A];第七屆全國水動力學(xué)學(xué)術(shù)會議暨第十九屆全國水動力學(xué)研討會文集(上冊)[C];2005年
4 ;帶螺旋管的各點等溫SDC311/5015量熱儀[A];湖北省電機工程學(xué)會電廠化學(xué)專委會2007年學(xué)術(shù)年會論文集[C];2007年
5 周永;鄭之初;張軍;郭軍;唐馳;;帶孔螺旋管的油水分離實驗研究[A];第十八屆全國水動力學(xué)研討會文集[C];2004年
6 張軍;郭軍;唐馳;龔道童;鄭之初;;螺旋管和T型管的模擬試驗[A];中國力學(xué)學(xué)會學(xué)術(shù)大會'2005論文摘要集(下)[C];2005年
7 鄭之初;張軍;郭軍;唐馳;王立洋;;復(fù)合式分離器的研究總結(jié)與展望[A];第二十屆全國水動力學(xué)研討會文集[C];2007年
8 楊戰(zhàn)利;張善保;楊永波;唐麒龍;趙德民;;新型大電流空冷MAG焊槍研制[A];第十四屆中國(北方)鋼管與管道技術(shù)交流會會議論文集[C];2011年
9 張軍;鄭之初;郭軍;唐馳;王立洋;;油氣水砂多相分離的新方法[A];第二十一屆全國水動力學(xué)研討會暨第八屆全國水動力學(xué)學(xué)術(shù)會議暨兩岸船舶與海洋工程水動力學(xué)研討會文集[C];2008年
相關(guān)博士學(xué)位論文 前3條
1 鄭萬冬;海水源熱泵用雙螺旋管海水換熱器傳熱特性的研究[D];天津大學(xué);2015年
2 邵莉;R134a在臥式螺旋管內(nèi)的兩相流動與傳熱特性研究[D];山東大學(xué);2009年
3 王克亮;冪律流體在螺旋管道內(nèi)的流動[D];大慶石油學(xué)院;2004年
相關(guān)碩士學(xué)位論文 前10條
1 宋尚銳;R407c臥式螺旋管內(nèi)的兩相流動與傳熱特性的研究[D];山東大學(xué);2015年
2 周維;模板法制備Ti納米螺旋管及溫度的影響[D];大連理工大學(xué);2015年
3 吳楊楊;超臨界CO_2在水平螺旋管內(nèi)冷卻換熱和阻力特性研究[D];重慶大學(xué);2015年
4 王斌;多頭螺旋管成型技術(shù)研究[D];燕山大學(xué);2016年
5 劉小林;等壁厚J55鋼螺旋管成形工藝及裝置研究[D];哈爾濱工業(yè)大學(xué);2016年
6 何榮偉;截面形狀及渦發(fā)生器對螺旋通道流體流動與傳熱特性的影響[D];廣西大學(xué);2016年
7 鄭西斌;預(yù)應(yīng)力混凝土樁基螺旋管換熱實驗研究[D];南京師范大學(xué);2016年
8 馮修燕;管內(nèi)波流螺旋自動清洗技術(shù)及傳熱性能研究[D];湘潭大學(xué);2016年
9 徐洪濤;螺旋管道內(nèi)的流動阻力和傳熱性能研究[D];華東理工大學(xué);2011年
10 王志國;螺旋管氣液兩相流數(shù)值模擬[D];中國石油大學(xué);2007年
,本文編號:2266213
本文鏈接:http://sikaile.net/kejilunwen/dongligc/2266213.html