凹陷渦發(fā)生器結(jié)構(gòu)和尺寸對(duì)流動(dòng)和傳熱影響的數(shù)值計(jì)算研究
本文選題:燃機(jī)冷卻 + 凹陷; 參考:《上海交通大學(xué)》2015年碩士論文
【摘要】:提高燃?xì)廨啓C(jī)出功的一重要途徑是提高燃?xì)鉁囟?而燃?xì)鉁囟鹊奶岣邔?duì)葉片等受熱材料的熱性能有更好的要求,因此發(fā)展更有效的冷卻結(jié)構(gòu)已經(jīng)成為燃?xì)廨啓C(jī)研發(fā)技術(shù)的瓶頸之一。而凹陷結(jié)構(gòu)的突出優(yōu)點(diǎn)是在提高傳熱效果的同時(shí)又可以避免過(guò)大的壓力損失,因此在將來(lái)燃?xì)廨啓C(jī)內(nèi)部冷卻中具有很好的應(yīng)用前景。本文的主要工作是通過(guò)數(shù)值計(jì)算對(duì)凹陷內(nèi)的流動(dòng)和傳熱進(jìn)行準(zhǔn)確模擬并與實(shí)驗(yàn)相驗(yàn)證,根據(jù)計(jì)算結(jié)果對(duì)不同凹陷的流動(dòng)和傳熱情況進(jìn)行了深入分析比較。具體如下:利用穩(wěn)態(tài)模型數(shù)值計(jì)算模擬研究了球形,橢球型,傾斜橢球型和淚滴型四種不同形狀凹陷的流動(dòng)和傳熱性能;比較了帶肋球形凹陷和不帶肋球形凹陷的傳熱和流動(dòng)效果并研究了肋高度對(duì)流動(dòng)和傳熱的影響;比較了前倒圓和全倒圓與對(duì)應(yīng)球形凹陷的流動(dòng)和傳熱區(qū)別;探究了凹陷深度對(duì)流動(dòng)和傳熱的影響。研究結(jié)果表明:在雷諾數(shù)分別為8500,18700,36700,50500,60000下,四種不同形狀凹陷中淚滴型凹陷的換熱效果最好,雖然其摩擦阻力也最大,而且淚滴型凹陷的綜合熱性能也最好;1.0mm的帶肋凹陷換熱比球形凹陷高出30%-40%,摩擦因子比球形凹陷高出80%左右;肋高對(duì)凹陷的流動(dòng)和傳熱有一定影響,隨著肋高的增加凹陷傳熱有所增強(qiáng),但摩擦阻力也顯著增大;前倒圓的換熱情況比球形凹陷略高3%左右,傳熱分布比球形凹陷均勻且摩擦阻力明顯更小。全倒圓換熱比球略低2%左右,但摩擦阻力最小,綜合熱性能最好。深度對(duì)凹陷傳熱影響,隨著深度增加球形凹陷換熱越強(qiáng),摩擦阻力損失越大,從綜合熱性能參數(shù)來(lái)看凹陷深度為2mm的球形凹陷綜合熱性能最好。
[Abstract]:An important way to increase the output power of gas turbine is to raise the gas temperature, and the increase of gas temperature has better requirements for the thermal performance of heated materials such as blades. Therefore, the development of more effective cooling structure has become one of the bottlenecks of gas turbine research and development technology. The outstanding advantage of the concave structure is that it can not only improve the heat transfer effect but also avoid excessive pressure loss, so it has a good application prospect in the future gas turbine internal cooling. The main work of this paper is to simulate accurately the flow and heat transfer in the sag by numerical calculation and to verify the experimental results. The flow and heat transfer in different sag are analyzed and compared according to the calculation results. The main contents are as follows: the flow and heat transfer characteristics of four kinds of hollow with different shape are studied by numerical simulation of steady state model, such as spherical, ellipsoid, inclined ellipsoid and tear droplet. The effects of heat transfer and flow in the spherical sag with and without ribs are compared, and the influence of rib height on the flow and heat transfer is studied, and the difference between the flow and heat transfer in the front inverted circle and the full inverted circle is compared with that in the corresponding spherical depression. The effect of indentation depth on flow and heat transfer was investigated. The results show that the heat transfer efficiency of the tear drop type sag is the best in the four different shapes of the sag, even though the friction resistance is the largest, at the Reynolds number of 18700 ~ 36700 ~ 50500 ~ (60 000), respectively. Moreover, the comprehensive thermal properties of tear-drop type sag are better than that of spherical sag, the heat transfer of 1.0 mm ribbed sag is 30-40% higher than that of spherical sag, the friction factor is about 80% higher than that of spherical sag, and the rib height has certain influence on the flow and heat transfer of the sag. With the increase of rib height, the heat transfer of the depression increases, but the friction resistance also increases significantly, the heat transfer of the front inverted circle is slightly higher about 3% than that of the spherical sag, and the heat transfer distribution is more uniform than that of the spherical sag and the friction resistance is obviously smaller than that of the spherical depression. The total reverse circle heat transfer is about 2% lower than that of the ball, but the friction resistance is the least, and the comprehensive thermal performance is the best. The effect of depth on the heat transfer of the sag, the stronger the heat transfer of the spherical sag with the increase of the depth, the greater the friction resistance loss, and the better the comprehensive thermal performance of the spherical sag with the depth of 2mm from the point of view of the comprehensive thermal performance parameters.
【學(xué)位授予單位】:上海交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TK471
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 梁曉川,榮煥宗,王淮;解非線性船波問(wèn)題的一個(gè)數(shù)值計(jì)算方法[J];中國(guó)造船;1988年01期
2 楊孫圣;孔繁余;邵飛;薛玲;;液力透平的數(shù)值計(jì)算與試驗(yàn)[J];江蘇大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年02期
3 張俊麗;;“數(shù)值計(jì)算方法”課程的教學(xué)改革探索[J];中國(guó)電力教育;2012年28期
4 蔣正祿;亞超音速全機(jī)縱向氣動(dòng)系數(shù)數(shù)值計(jì)算方法的改善與發(fā)展[J];空氣動(dòng)力學(xué)學(xué)報(bào);1986年01期
5 齊承英,,俞頤秦,呂燦仁;傳熱數(shù)值計(jì)算中應(yīng)用外推法研究[J];河北工業(yè)大學(xué)學(xué)報(bào);1996年02期
6 郭壯志;吳杰康;毛曉明;楊俊華;;電力系統(tǒng)及其自動(dòng)化專業(yè)“數(shù)值計(jì)算方法”教學(xué)探索[J];中國(guó)電力教育;2013年13期
7 李夢(mèng)霞;陳忠;;《數(shù)值計(jì)算方法》直觀教學(xué)研究[J];長(zhǎng)江大學(xué)學(xué)報(bào)(自然科學(xué)版)理工卷;2009年01期
8 李小林;;關(guān)于數(shù)值計(jì)算方法課程教學(xué)改革的探討[J];重慶文理學(xué)院學(xué)報(bào)(自然科學(xué)版);2010年02期
9 艾莉萍;趙天玉;;工科少學(xué)時(shí)《數(shù)值計(jì)算方法》課程教學(xué)探討[J];長(zhǎng)江大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年10期
10 王松柏;移動(dòng)邊界噴管壁溫的數(shù)值計(jì)算[J];兵工學(xué)報(bào);1988年01期
相關(guān)會(huì)議論文 前10條
1 榮傳新;王冰;;數(shù)值計(jì)算的發(fā)展趨勢(shì)及其存在的危機(jī)[A];全國(guó)礦山建設(shè)學(xué)術(shù)會(huì)議論文選集(上冊(cè))[C];2003年
2 沈建琪;劉蕾;;經(jīng)典Mie散射的數(shù)值計(jì)算方法改進(jìn)[A];第六屆全國(guó)顆粒測(cè)試學(xué)術(shù)會(huì)議論文集[C];2005年
3 馮振飛;林清宇;王軍;林榕端;;換熱管內(nèi)自旋紐帶轉(zhuǎn)速的數(shù)值計(jì)算[A];壓力容器先進(jìn)技術(shù)——第七屆全國(guó)壓力容器學(xué)術(shù)會(huì)議論文集[C];2009年
4 儲(chǔ)德林;;廣義μ函數(shù)的數(shù)值計(jì)算[A];中國(guó)科學(xué)技術(shù)協(xié)會(huì)首屆青年學(xué)術(shù)年會(huì)論文集(工科分冊(cè)·上冊(cè))[C];1992年
5 杜立群;楊季玲;徐征;王立鼎;;無(wú)閥微泵流體特性的數(shù)值計(jì)算和結(jié)構(gòu)優(yōu)化設(shè)計(jì)[A];中國(guó)微米、納米技術(shù)第七屆學(xué)術(shù)會(huì)年會(huì)論文集(一)[C];2005年
6 林建國(guó);劉穎;;求解對(duì)流擴(kuò)散方程的局部解析算法[A];第十六屆全國(guó)水動(dòng)力學(xué)研討會(huì)文集[C];2002年
7 馬柏祥;;純鋁密度的數(shù)值計(jì)算研究[A];中國(guó)管理科學(xué)文獻(xiàn)[C];2008年
8 臧建彬;張旭;徐琳;;多源匯復(fù)合溫度擴(kuò)散的數(shù)值計(jì)算及實(shí)驗(yàn)研究[A];制冷空調(diào)新技術(shù)進(jìn)展——第四屆全國(guó)制冷空調(diào)新技術(shù)研討會(huì)論文集[C];2006年
9 方洪淵;錢(qián)乙余;姜以宏;;超細(xì)銅絲形球過(guò)程的數(shù)值計(jì)算及實(shí)驗(yàn)分析[A];第四屆全國(guó)電子工業(yè)焊接學(xué)術(shù)會(huì)議論文集[C];1992年
10 史祥蓉;蔣曉勤;饒偉;;關(guān)于解題條件合理性問(wèn)題的討論[A];2005年全國(guó)高校非物理類(lèi)專業(yè)物理教育學(xué)術(shù)研討會(huì)論文集[C];2005年
相關(guān)碩士學(xué)位論文 前7條
1 馮巖;凹陷渦發(fā)生器結(jié)構(gòu)和尺寸對(duì)流動(dòng)和傳熱影響的數(shù)值計(jì)算研究[D];上海交通大學(xué);2015年
2 金小峰;基于有限差分的四分倉(cāng)回轉(zhuǎn)式空氣預(yù)熱器傳熱性能數(shù)值計(jì)算[D];上海交通大學(xué);2007年
3 楊季玲;無(wú)閥微泵壓電—應(yīng)力—流體耦合場(chǎng)數(shù)值計(jì)算研究[D];大連理工大學(xué);2006年
4 趙威;離心泵的流噪聲數(shù)值計(jì)算及聲優(yōu)化[D];華中科技大學(xué);2013年
5 李麟;新型凹陷渦發(fā)生器冷卻結(jié)構(gòu)內(nèi)流動(dòng)與傳熱的數(shù)值計(jì)算研究[D];上海交通大學(xué);2014年
6 閆東;電廠冷卻塔雨區(qū)性能的數(shù)值計(jì)算研究[D];山東大學(xué);2013年
7 廖玉梅;利用最優(yōu)參數(shù)選擇方法數(shù)值求解微分方程的周期問(wèn)題[D];貴州大學(xué);2008年
本文編號(hào):2050653
本文鏈接:http://sikaile.net/kejilunwen/dongligc/2050653.html