我國能源消費碳足跡時空遷移及影響因素研究
本文選題:碳足跡 + 時空遷移 ; 參考:《安徽財經(jīng)大學(xué)》2016年碩士論文
【摘要】:隨著每年全球氣候大會的召開,全球氣候變化問題已逐漸成為當(dāng)前國際社會關(guān)注的熱點,各國政府不斷強調(diào)節(jié)能減排、保護(hù)環(huán)境,低碳經(jīng)濟(jì)的發(fā)展是必然的趨勢。《京都議定書》的簽訂更是強調(diào)了發(fā)達(dá)國家與發(fā)展中國家在國際社會承擔(dān)減排的義務(wù)。我國是最大的發(fā)展中國家,科學(xué)技術(shù)遠(yuǎn)不及發(fā)達(dá)國家,經(jīng)濟(jì)的發(fā)展需要依賴傳統(tǒng)能源,環(huán)境問題與能源危機(jī)目前亟待解決。我國也是一個能源消耗大國,在全球低碳減排的大背景下,我國有義務(wù)為環(huán)境的友好發(fā)展做貢獻(xiàn);谏鲜鲆蛩,本研究以能源終端消費量為基礎(chǔ),測算了我國30個省域單元的碳足跡。分別從時間演化和空間分布角度來分析省域碳足跡的時空遷移,并基于STIRPAT模型和EKC曲線,闡述對我國能源消費碳足跡的影響因素。實證結(jié)果顯示:第一,我國的碳足跡居世界第一,環(huán)境壓力問題亟需解決。從2003年到2014年,我國碳足跡總量的增長率為557%,平均每年的變化強度為25.96%,省域的之間的碳足跡增長有明顯的差異性并逐步擴(kuò)大。碳足跡在空間上存在自相關(guān)性,表現(xiàn)出明顯集聚特性,區(qū)域碳足跡的影響不僅來自于本身還與周邊區(qū)域息息相關(guān)。在空間分布上,東部地區(qū)碳足跡普遍高于西部地區(qū),但是它們之間的差異逐漸減少。第二,基于STIRPAT模型的實證結(jié)果顯示,對環(huán)境壓力的影響程度從高到低依次是人口數(shù)量、第二產(chǎn)業(yè)所占比重、第三產(chǎn)業(yè)產(chǎn)業(yè)所占比重、高新產(chǎn)業(yè)占比、人均GDP。人口數(shù)量對碳足跡的影響最高,彈性系數(shù)高達(dá)14.8867。整體上看,我國東部人口高于西部,其生產(chǎn)生活所依靠的能源也在與日俱增,環(huán)境壓力隨之增加。我國人均GDP每增加1%,碳足跡增加0.5188%。在空間分布上,東部沿海省市人均GDP均高于內(nèi)陸地區(qū),前者對碳足跡的貢獻(xiàn)必然高于后者?傮w來說,人均GDP是碳足跡的一個重要影響因素,同時也會增加空間分布的不均衡特質(zhì)。第二產(chǎn)業(yè)比重每增加一個百分點,碳足跡減少2.0846個百分點,也就是說第二產(chǎn)業(yè)占比越高,減排作用越大。高新產(chǎn)業(yè)占比對環(huán)境壓力的影響是正向的,彈性系數(shù)為1.4267。目前我國的高新技術(shù)產(chǎn)業(yè)的研究成果真正應(yīng)用于提升環(huán)境質(zhì)量領(lǐng)域的少之又少,反而會增加環(huán)境壓力。基于以上分析,碳足跡的區(qū)域差異性特征日益凸顯,且區(qū)域間相互影響,人口、富裕、技術(shù)等因素也對空間差異有一定的影響。第三,人均GDP對碳足跡的影響程度最小,彈性為0.5188,環(huán)境與經(jīng)濟(jì)發(fā)展之間的關(guān)系已經(jīng)慢慢變?nèi)。本研究基于環(huán)境庫茲涅茨分析,探索人均碳足跡與人均GDP的關(guān)系,實證結(jié)果顯示,兩者之間呈“N”型曲線關(guān)系。
[Abstract]:With the holding of the global climate conference every year, the global climate change has gradually become the focus of attention of the international community. The governments of various countries continue to emphasize energy conservation and emission reduction, and protect the environment. The development of low-carbon economy is an inevitable trend, and the signing of Kyoto Protocol emphasizes the obligation of developed and developing countries to reduce emissions in the international community. China is the largest developing country, science and technology is far from developed countries, economic development needs to rely on traditional energy, environmental problems and energy crisis need to be solved. China is also a large energy consuming country. Under the background of global low carbon emission reduction, China has the obligation to contribute to the friendly development of the environment. Based on the above factors, the carbon footprint of 30 provincial units in China was calculated on the basis of energy terminal consumption. The temporal and spatial migration of provincial carbon footprint is analyzed from the angle of time evolution and spatial distribution. Based on the STIRPAT model and EKC curve, the influencing factors on the carbon footprint of energy consumption in China are discussed. The empirical results show that: first, our carbon footprint ranks first in the world, environmental pressure needs to be solved. From 2003 to 2014, the total growth rate of China's carbon footprint is 5577.The average annual change intensity is 25.96. The growth of carbon footprint between provinces has obvious difference and gradually expands. There is an autocorrelation of carbon footprint in space, showing obvious agglomeration characteristics. The influence of regional carbon footprint is not only from itself but also from the surrounding area. In the spatial distribution, the carbon footprint of the eastern region is generally higher than that of the western region, but the difference between them decreases gradually. Secondly, the empirical results based on STIRPAT model show that the degree of influence on environmental pressure from high to low is population, the proportion of secondary industry, the proportion of tertiary industry, the proportion of high-tech industry, per capita. The impact of population size on the carbon footprint is the highest, with a coefficient of elasticity as high as 14.8867. As a whole, the population of eastern China is higher than that of western China. China's per capita GDP increases by 1 and the carbon footprint increases by 0. 5188. In spatial distribution, the per capita GDP of eastern coastal provinces is higher than that of inland areas, and the contribution of the former to the carbon footprint is bound to be higher than that of the latter. Overall, GDP per capita is an important factor in carbon footprint, and it also increases the disequilibrium of spatial distribution. For every percentage point increase in the secondary industry, the carbon footprint is reduced by 2.0846 percentage points, which means that the higher the ratio of the secondary industry is, the greater the emission reduction effect will be. The effect of the proportion of high-tech industry on environmental pressure is positive, the elastic coefficient is 1.4267. At present, the research results of high and new technology industry in our country are seldom used in the field of improving environmental quality, but will increase the environmental pressure. Based on the above analysis, the regional differences of carbon footprint are increasingly prominent, and regional interaction, population, wealth, technology and other factors also have a certain impact on spatial differences. Third, the impact of GDP per capita on carbon footprint is the least, with elasticity of 0.5188, and the relationship between environment and economic development has gradually weakened. Based on the environmental Kuznets analysis, this study explores the relationship between per capita carbon footprint and per capita GDP. The empirical results show that there is a "N" curve relationship between the two.
【學(xué)位授予單位】:安徽財經(jīng)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:X24;F426.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黃雨生;曲建升;劉莉娜;;中國各省份碳足跡與碳承載力差異研究[J];生態(tài)經(jīng)濟(jì);2016年06期
2 梁中;徐蓓;;“碳鎖定”研究:一個文獻(xiàn)綜述[J];經(jīng)濟(jì)體制改革;2016年02期
3 崔琦;楊軍;董琬璐;;中國碳排放量估計結(jié)果及差異影響因素分析[J];中國人口·資源與環(huán)境;2016年02期
4 萬文玉;趙雪雁;王偉軍;;中國城市居民生活能源碳排放的時空格局及影響因素分析[J];環(huán)境科學(xué)學(xué)報;2016年09期
5 齊紹洲;林\~;王班班;;中部六省經(jīng)濟(jì)增長方式對區(qū)域碳排放的影響——基于Tapio脫鉤模型、面板數(shù)據(jù)的滯后期工具變量法的研究[J];中國人口·資源與環(huán)境;2015年05期
6 肖皓;楊佳衡;蔣雪梅;;最終需求的完全碳排放強度變動及其影響因素分析[J];中國人口.資源與環(huán)境;2014年10期
7 唐建榮;鄧林;;基于LARS-Lasso方法的碳足跡影響因素分析[J];軟科學(xué);2014年09期
8 周國富;宮麗麗;;京津冀能源消耗的碳足跡及其影響因素分析[J];經(jīng)濟(jì)問題;2014年08期
9 唐建榮;陳實;;基于隨機(jī)森林方法的碳足跡及其影響因素研究[J];統(tǒng)計與信息論壇;2013年10期
10 張偉;王韶華;;產(chǎn)業(yè)結(jié)構(gòu)變動對碳強度影響的靈敏度分析[J];軟科學(xué);2013年08期
,本文編號:1969377
本文鏈接:http://sikaile.net/kejilunwen/dongligc/1969377.html