大缸徑天然氣發(fā)動(dòng)機(jī)進(jìn)氣道結(jié)構(gòu)對(duì)氣體流動(dòng)影響的研究
本文選題:天然氣發(fā)動(dòng)機(jī) + 進(jìn)氣道; 參考:《中國(guó)艦船研究院》2015年碩士論文
【摘要】:天然氣發(fā)動(dòng)機(jī)的開(kāi)發(fā)、應(yīng)用能有效促進(jìn)我國(guó)能源結(jié)構(gòu)調(diào)整,實(shí)現(xiàn)節(jié)能減排。提高功率密度、提高熱效率、降低排放,是天然氣發(fā)動(dòng)機(jī)開(kāi)發(fā)過(guò)程中的研究熱點(diǎn)。合理的氣流組織對(duì)天然氣發(fā)動(dòng)機(jī)實(shí)現(xiàn)清潔、高效燃燒有著重要的影響,而進(jìn)氣道結(jié)構(gòu)是決定缸內(nèi)空氣量及渦流強(qiáng)度的關(guān)鍵因素,直接對(duì)氣流組織和燃燒過(guò)程產(chǎn)生影響。天然氣發(fā)動(dòng)機(jī)在進(jìn)氣道上布置有燃?xì)鈬娮旌凸?jié)氣門,其結(jié)構(gòu)同樣會(huì)對(duì)缸內(nèi)氣體流動(dòng)產(chǎn)生影響。因此,以某中速大缸徑天然氣發(fā)動(dòng)機(jī)串聯(lián)式切向氣道為研究對(duì)象,采用CFD模擬和氣道穩(wěn)流試驗(yàn)相結(jié)合的方法,研究了進(jìn)氣道結(jié)構(gòu),燃?xì)鈬娮旒肮?jié)氣門結(jié)構(gòu)對(duì)缸內(nèi)氣體流動(dòng)的影響規(guī)律。具體研究?jī)?nèi)容如下:首先,應(yīng)用CFD仿真研究,提出了天然氣發(fā)動(dòng)機(jī)進(jìn)氣道結(jié)構(gòu)主特征參數(shù):氣道導(dǎo)向角Av,氣道喉口直徑dv,氣閥錐角An和彎曲半徑R,并研究了其對(duì)氣體流動(dòng)的影響規(guī)律。模擬結(jié)果表明:當(dāng)Av減小7%時(shí),氣道平均流量系數(shù)降低約2%,平均渦流比提高約25%;當(dāng)dv減小4%時(shí),氣道平均流量系數(shù)降低約3%,平均渦流比提高約10%;當(dāng)An減小17%時(shí),氣道平均流量系數(shù)降低約2%,平均渦流比降低約15%;當(dāng)R減小7%時(shí),氣道平均流量系數(shù)降低0.2約%,平均渦流比降低約2%。同時(shí)可將各主特征參數(shù)對(duì)氣體流動(dòng)的影響規(guī)律應(yīng)用在相似機(jī)型進(jìn)氣道的設(shè)計(jì)開(kāi)發(fā),若考慮增大進(jìn)氣道的流通性,可優(yōu)先增大喉口直徑dv;若考慮增大進(jìn)氣道的渦流強(qiáng)度,可優(yōu)先減小氣道導(dǎo)向角Av。然后,應(yīng)用CFD仿真研究,確定了燃?xì)鈬娮旌凸?jié)氣門結(jié)構(gòu)對(duì)氣體流動(dòng)的的影響規(guī)律。模擬結(jié)果表明:加裝燃?xì)鈬娮旌凸?jié)氣門后氣道性能稍有變差,平均流量系數(shù)降低約4%,平均渦流比降低約2%,實(shí)際上這種影響主要來(lái)自于燃?xì)鈬娮旖Y(jié)構(gòu)。最后,應(yīng)用3D打印快速成型技術(shù)加工試驗(yàn)件,該方法具有精度高,加工周期短的特點(diǎn),大大減小了試驗(yàn)件鑄造偏差對(duì)試驗(yàn)結(jié)果的影響,并極大的縮短了加工周期。同時(shí)開(kāi)展氣道穩(wěn)流試驗(yàn)驗(yàn)證了CFD仿真計(jì)算的準(zhǔn)確性,分析表明:仿真計(jì)算與穩(wěn)流試驗(yàn)結(jié)果有很高的一致性,可將兩者平均流量系數(shù)的偏差控制在3%以內(nèi),平均渦流比的偏差控制在10%以內(nèi)。本課題的研究實(shí)現(xiàn)了應(yīng)用CFD仿真技術(shù)對(duì)氣道性能的定性判斷和定量分析,提高了試驗(yàn)驗(yàn)證的效率和水平。CFD仿真技術(shù)與氣道穩(wěn)流試驗(yàn)的有機(jī)結(jié)合,可作為氣道設(shè)計(jì)開(kāi)發(fā)的重要手段之一。
[Abstract]:The development and application of natural gas engine can effectively promote the adjustment of energy structure and realize energy saving and emission reduction. Increasing power density, increasing thermal efficiency and reducing emissions are the hot spots in the development of natural gas engine. Reasonable airflow distribution plays an important role in the clean and efficient combustion of natural gas engine. The structure of intake port is the key factor to determine the air volume and swirl intensity in the cylinder and has a direct impact on the airflow organization and combustion process. The gas nozzle and throttle are arranged on the intake port of the natural gas engine, and its structure will also affect the gas flow in the cylinder. Therefore, a series tangential port of a medium speed and large cylinder diameter natural gas engine is used as the research object. The structure of the inlet is studied by using the method of CFD simulation and steady flow test of the port. The influence of nozzle and throttle structure on gas flow in cylinder. The specific research contents are as follows: first, the application of CFD simulation research, The main characteristic parameters of intake port structure of natural gas engine are presented: Port guide angle Av, throat diameter DVD, air valve cone angle an and bending radius R, and its influence on gas flow is studied. The simulation results show that when AV decreases by 7, the mean flow coefficient of the airway decreases by about 2 and the mean eddy current ratio increases by about 25 percent; when DV decreases by 4, the average flow coefficient of the airway decreases by about 3 and the average eddy current ratio increases by about 10 percent; when an decreases by 17 percent, the flow coefficient increases by about 10 percent; and when an decreases by 17 percent, the flow coefficient increases by about 10 percent. The mean flow coefficient of the airway is reduced by about 2 and the mean eddy current ratio is reduced by about 15. When R is reduced by 7, the average flow coefficient of the airway is reduced by about 0.2 and the average eddy current ratio by about 2. At the same time, the influence of main characteristic parameters on gas flow can be applied to the design and development of the similar type of inlet. If the flow of the inlet is increased, the diameter of the throat can be increased first, and if the eddy current intensity of the inlet is increased, The airway guide angle Av can be reduced preferentially. Then, the influence of gas nozzle and throttle structure on gas flow is determined by CFD simulation. The simulation results show that the performance of the gas nozzle and throttle is slightly worse, the average flow coefficient is reduced by about 4 percent and the average eddy current ratio is reduced by about 2 percent. In fact, this effect is mainly due to the structure of the gas nozzle. Finally, the 3D printing rapid prototyping technology is used to process the test piece. The method has the characteristics of high precision and short processing cycle, which greatly reduces the influence of casting deviation on the test results and greatly shortens the processing period. At the same time, the accuracy of CFD simulation is verified by the steady flow test. The analysis shows that there is a high consistency between the simulation calculation and the steady flow test result, and the deviation of the average flow coefficient between the two can be controlled within 3%. The deviation of the average eddy current ratio is controlled within 10%. In this paper, the qualitative judgment and quantitative analysis of the airway performance are realized by using the CFD simulation technology, and the efficiency of the test verification is improved, and the level of the simulation technology is combined with the steady flow test. It can be used as one of the important means of airway design and development.
【學(xué)位授予單位】:中國(guó)艦船研究院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TK403
【參考文獻(xiàn)】
相關(guān)期刊論文 前3條
1 張國(guó)勇;陳志忠;;船用柴油機(jī)進(jìn)氣道類型及結(jié)構(gòu)參數(shù)對(duì)流通性能的影響[J];艦船科學(xué)技術(shù);2010年08期
2 周冬;柴油機(jī)改裝天然氣發(fā)動(dòng)機(jī)的意義及技術(shù)措施[J];山東內(nèi)燃機(jī);2005年01期
3 陳日軍,徐宏;發(fā)動(dòng)機(jī)缸蓋氣道及水腔模具快速成型技術(shù)研究[J];新技術(shù)新工藝;2005年03期
相關(guān)碩士學(xué)位論文 前6條
1 侯元靜;增壓柴油機(jī)雙進(jìn)氣道流動(dòng)特性的三維數(shù)值模擬研究[D];北京交通大學(xué);2011年
2 胡云萍;船用柴油機(jī)氣體流動(dòng)的數(shù)值模擬[D];山東大學(xué);2006年
3 崔東曉;4V105柴油機(jī)四氣門缸蓋進(jìn)氣道的設(shè)計(jì)研究[D];湖南大學(xué);2006年
4 吳浩;柴油機(jī)螺旋進(jìn)氣道結(jié)構(gòu)參數(shù)對(duì)氣道性能的影響及其優(yōu)化設(shè)計(jì)[D];華中科技大學(xué);2006年
5 王麗平;基于CAD/CFD的135型柴油機(jī)螺旋進(jìn)氣道的研究[D];大連理工大學(xué);2007年
6 李全武;H12V190ZLT型高增壓、稀燃天然氣發(fā)動(dòng)機(jī)的設(shè)計(jì)開(kāi)發(fā)[D];山東大學(xué);2008年
,本文編號(hào):1935561
本文鏈接:http://sikaile.net/kejilunwen/dongligc/1935561.html