循環(huán)流化床鍋爐散熱損失數(shù)值模擬及實驗研究
發(fā)布時間:2018-01-23 01:52
本文關鍵詞: 循環(huán)流化床 鍋爐 散熱損失 數(shù)值模擬 熱態(tài)實驗臺 出處:《哈爾濱理工大學》2016年碩士論文 論文類型:學位論文
【摘要】:循環(huán)流化床鍋爐散熱損失的實質(zhì)是由保溫層性能的好壞以及保溫結(jié)構(gòu)的合理性所決定。所以本文以某現(xiàn)運行電廠的220t/h循環(huán)流化床鍋爐作為研究對象,通過對保溫材料、保溫結(jié)構(gòu)、外壁面溫度的模擬分析及實驗研究,獲得爐墻傳熱及保溫性能規(guī)律。探討爐墻在保溫材料及保溫結(jié)構(gòu)變化時對散熱損失的影響,給出了多種材料及保溫結(jié)構(gòu)的經(jīng)濟厚度。首先,建立了循環(huán)流化床鍋爐各部分的物理模型及數(shù)學模型,然后利用Comsol軟件對多種保溫材料及保溫結(jié)構(gòu)的傳熱過程進行數(shù)值模擬,計算得出爐墻傳熱過程的溫度分布規(guī)律、外壁面溫度分布特點及其相應的經(jīng)濟厚度。通過對模擬結(jié)果的分析可知,不同保溫材料及保溫結(jié)構(gòu)在同一工況下的經(jīng)濟厚度并不相同;保溫材料厚度相同時承受的溫度也不同,而這些模擬結(jié)論為工程實踐提供了理論依據(jù)。其次,本文在數(shù)值模擬的基礎上,針對研究內(nèi)容設計并搭建了循環(huán)流化床爐墻傳熱熱態(tài)實驗臺。通過對多種保溫材料及保溫結(jié)構(gòu)的保溫性能測試,得出爐墻外壁面溫度分布規(guī)律、外壁面溫度及保溫材料的保溫性能曲線。通過對其厚度上的調(diào)節(jié)使外壁面溫度符合標準值,進而使散熱損失達到最小。最后,結(jié)合實驗測試結(jié)果對部分模擬方案進行驗證同時分析兩者產(chǎn)生差異的原因。綜合數(shù)值模擬結(jié)果與實驗結(jié)果得出爐膛部分,硅酸鋁纖維氈與巖棉的經(jīng)濟厚度為110mm;酚醛礦渣棉與復合材料的經(jīng)濟厚度為130mm;旋風分離器部分,硅酸鋁耐火纖維氈的經(jīng)濟厚度為57mm,硅酸鋁纖維毯的經(jīng)濟厚度為155mm,水泥膨脹蛭石板塊的經(jīng)濟厚度為58mm;尾部煙道部分:兩種設計方案中所能承受的最高平均溫度分別為396℃、386℃。所以針對爐型找到保溫材料的經(jīng)濟厚度可以使循環(huán)流化床鍋爐散熱損失降低,同時節(jié)約運行成本及施工成本,為工程實踐提供參考。
[Abstract]:The essence of heat loss of circulating fluidized bed boiler is decided by the performance of insulation layer and the reasonableness of insulation structure. So this paper takes 220 t / h circulating fluidized bed boiler in a power plant as the research object. The heat transfer and heat preservation performance of the furnace wall are obtained through the simulation analysis and experimental study on the heat preservation material, the insulation structure and the external wall temperature, and the influence of the furnace wall on the heat dissipation loss when the heat preservation material and structure change are discussed. The economic thickness of various materials and insulation structures is given. Firstly, the physical and mathematical models of each part of CFB boiler are established. Then the heat transfer process of various insulating materials and structures is simulated by Comsol software, and the temperature distribution of the furnace wall heat transfer process is calculated. Through the analysis of the simulation results, it can be seen that the economic thickness of different insulating materials and structures is different under the same working condition. The same thickness of insulation materials bear different temperatures, and these simulation conclusions provide a theoretical basis for engineering practice. Secondly, this paper is based on the numerical simulation. According to the research content design and build the circulating fluidized bed furnace wall heat transfer and hot state test platform. Through a variety of thermal insulation materials and insulation structure thermal insulation performance test obtained out of the wall wall temperature distribution. Through the adjustment of the thickness of the external wall temperature in line with the standard value, and then make the heat loss to the minimum. Finally. Combined with the experimental results to verify part of the simulation scheme and analyze the reasons for the difference between the two. Combined with the results of numerical simulation and experimental results to get the furnace part. The economic thickness of aluminum silicate fiber felt and rock wool is 110 mm; The economic thickness of phenolic slag cotton and composite material is 130 mm. In the cyclone separator, the economic thickness of aluminum silicate refractory fiber felt is 57 mm, the economic thickness of aluminum silicate fiber blanket is 155 mm, and the economic thickness of cement expansion vermiculite plate is 58 mm; Tail flue: the maximum average temperature of the two designs is 396 鈩,
本文編號:1456352
本文鏈接:http://sikaile.net/kejilunwen/dongligc/1456352.html
最近更新
教材專著