面向?qū)ο蠓诸惖臎Q策樹方法探討——以Landsat-8OLI為例
發(fā)布時間:2019-06-22 11:08
【摘要】:針對目前遙感影像分類中面向?qū)ο蠛蜎Q策樹相結(jié)合的研究較少的情況,該文提出基于C5.0決策樹的面向?qū)ο蠓诸惙椒?并以廣州市從化區(qū)進行實證研究。基于Landsat-8OLI影像數(shù)據(jù),采用面向?qū)ο蠓诸悓τ跋襁M行多尺度分割,提取出影像對象的光譜、紋理特征以及影像對象相對應(yīng)的DEM信息;然后利用C5.0決策樹根據(jù)特征信息來挖掘分類規(guī)則;最后根據(jù)規(guī)則對分割后影像進行分類。結(jié)果表明,基于C5.0決策樹的面向?qū)ο笥跋穹诸惥雀、效果?總體精度和Kappa系數(shù)分別為89.75%和87.5%。該方法可準(zhǔn)確、快速地提取土地利用/覆被信息。
[Abstract]:In view of the fact that there is little research on the combination of object-oriented and decision tree in remote sensing image classification, this paper proposes an object-oriented classification method based on c5.0 decision tree, and makes an empirical study on Guangzhou slave area. Based on the Landsat-8OLI image data, the multi-scale segmentation of the image is carried out by object-oriented classification, and the spectral and texture features of the image object and the corresponding DEM information of the image object are extracted; then the c5.0 decision tree is used to mine the classification rules according to the feature information; finally, the segmented image is classified according to the rules. The results show that the object-oriented image classification based on c5.0 decision tree has high accuracy and good effect, and the overall accuracy and Kappa coefficient are 89. 75% and 87. 5%, respectively. This method can extract land use / cover information accurately and quickly.
【作者單位】: 四川省萬源市國土資源局;廣州大學(xué)地理科學(xué)學(xué)院;
【基金】:國家自然科學(xué)基金項(41171070) 廣州大學(xué)研究生項(2014YJS01)
【分類號】:P237
[Abstract]:In view of the fact that there is little research on the combination of object-oriented and decision tree in remote sensing image classification, this paper proposes an object-oriented classification method based on c5.0 decision tree, and makes an empirical study on Guangzhou slave area. Based on the Landsat-8OLI image data, the multi-scale segmentation of the image is carried out by object-oriented classification, and the spectral and texture features of the image object and the corresponding DEM information of the image object are extracted; then the c5.0 decision tree is used to mine the classification rules according to the feature information; finally, the segmented image is classified according to the rules. The results show that the object-oriented image classification based on c5.0 decision tree has high accuracy and good effect, and the overall accuracy and Kappa coefficient are 89. 75% and 87. 5%, respectively. This method can extract land use / cover information accurately and quickly.
【作者單位】: 四川省萬源市國土資源局;廣州大學(xué)地理科學(xué)學(xué)院;
【基金】:國家自然科學(xué)基金項(41171070) 廣州大學(xué)研究生項(2014YJS01)
【分類號】:P237
【相似文獻】
相關(guān)期刊論文 前10條
1 杜福光;;面向?qū)ο蠓诸惙ㄔ谔粕侥虾b感信息提取中的優(yōu)越性分析[J];唐山師范學(xué)院學(xué)報;2014年02期
2 楊葉濤;王迎迎;曾又枝;;基于面向?qū)ο笥跋穹治龅木坝^連接特征多尺度提取研究[J];測繪與空間地理信息;2012年12期
3 王代X;王志恒;杜霄蒙;陳雨苗;;基于面向?qū)ο蠹夹g(shù)的低山區(qū)公路信息提取研究——以廣西省玉林市為例[J];天津城建大學(xué)學(xué)報;2014年02期
4 華一新,江南;面向?qū)ο驡IS工具軟件的開發(fā)管理[J];解放軍測繪學(xué)院學(xué)報;1996年04期
5 武曉莉;高小力;;面向?qū)ο蠹夹g(shù)及其在GIS中的應(yīng)用[J];測繪科技通訊;1996年04期
6 胡桑;;面向?qū)ο蠹夹g(shù)在制圖中的應(yīng)用[J];測繪科技通訊;1995年02期
7 王蘭輝;李彬;;面向?qū)ο驡IS建模的原則與方法[J];科技致富向?qū)?2011年02期
8 蔣志華,林喜榮;面向?qū)ο蠹夹g(shù)在空間信息系統(tǒng)中的應(yīng)用[J];電腦與信息技術(shù);1995年04期
9 李s,
本文編號:2504522
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/2504522.html
最近更新
教材專著