天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 測繪論文 >

GF-2遙感影像城市空間信息提取與應(yīng)用研究

發(fā)布時間:2019-03-15 18:29
【摘要】:遙感技術(shù)是對地觀測,獲取地面空間信息的主要技術(shù)手段之一。隨著遙感技術(shù)的不斷發(fā)展,高分辨率遙感影像的研究和應(yīng)用越來越受到重視。高分辨率遙感影像的出現(xiàn),“面向?qū)ο蟆庇跋穹诸惙椒S之崛起,圍繞它的研究和應(yīng)用由點及面地推廣開來,運用于城市制圖、城市土地動態(tài)變化監(jiān)測、公共安全管理、突發(fā)情況預(yù)警等方面的研究,可以說面向?qū)ο髨D像分析(objectoriented image analysis,OBIA)已經(jīng)在多個領(lǐng)域碩果累累。與傳統(tǒng)的基于像元的遙感影像分類的方法相比,面向?qū)ο笥跋穹诸惸芸朔敖符}噪聲”和“混合像元”等諸多問題,通過影像分割算法,將圖像分成若干“圖像對象”,借助于這些對象共有的幾何特征、光譜特征、紋理特征和上下文關(guān)系等,能對每一類地物進行準(zhǔn)確的提取,具有巨大的優(yōu)勢。但是目前利用面向?qū)ο蠓诸惖难芯恐饕性谏帧⑥r(nóng)業(yè)、城郊等地帶,直接面向城市內(nèi)部復(fù)雜地物提取的研究還比較少,且這些研究的研究區(qū)域都較小,未能充分利用這些“圖像對象”的特征來提取復(fù)雜的空間信息,沒有體現(xiàn)面向?qū)ο蠓诸惖膬?yōu)勢。針對這些問題,本文從整體出發(fā),以提取城市空間信息為目的,以北京市為研究區(qū)域,以1m空間分辨率的GF-2多光譜與全色融合影像為數(shù)據(jù)支撐,按照面向?qū)ο蠓诸愃枷?以本文提出的V-I-W模型為理論指導(dǎo),對主要的城市空間信息進行組織,將城市空間信息分為3大類14小類,通過多尺度分割、光譜差異分割來獲取GF-2影像的“圖像對象”,按照光譜特征、波段值特征、幾何特征、紋理特征、和上下文關(guān)系建立各空間信息的提取規(guī)則,從而提取主要的城市空間信息,構(gòu)建RS與GIS的橋梁,用于城市空間分析應(yīng)用。本文的研究結(jié)果表明,城市空間信息提取的總體精度為83.24%,Kappa系數(shù)為0.8069。單一類別的地物提取方面,植被,河流提取精度較高,高于80%,城市道路,房屋等建筑的提取精度稍低,總體的空間信息提取結(jié)果符合預(yù)期。
[Abstract]:Remote sensing is one of the main technical means for Earth observation and acquisition of ground space information. With the development of remote sensing technology, more and more attention has been paid to the research and application of high-resolution remote sensing images. With the emergence of high-resolution remote sensing images, the object-oriented image classification method has emerged. The research and application of object-oriented image classification has been extended from point to area and applied to urban cartography, urban land dynamic change monitoring, public safety management, and so on. It can be said that object-oriented image analysis (objectoriented image analysis,OBIA) has already achieved great achievements in many fields, such as emergency early warning and so on. Compared with the traditional pixel-based remote sensing image classification method, object-oriented image classification can overcome many problems such as "pepper-salt noise" and "mixed pixel". Through image segmentation algorithm, the image can be divided into several "image objects". With the help of common geometric features, spectral features, texture features and context relations, each kind of objects can be extracted accurately, which has great advantages. But at present, the research of object-oriented classification is mainly focused on forest, agriculture, suburb and so on. There are still few studies directly facing the extraction of complex features within the city, and the research areas of these studies are small, and the research area of these studies is relatively small. The features of these "image objects" are not fully utilized to extract complex spatial information, which does not reflect the advantages of object-oriented classification. To solve these problems, this paper aims at extracting the urban spatial information, taking Beijing as the research area, taking the 1 m spatial resolution GF-2 multi-spectral and panchromatic fusion image as the data support, according to the object-oriented classification idea, and aiming at extracting the urban spatial information, taking Beijing as the research area. Under the guidance of the V-I-W model proposed in this paper, the main urban spatial information is organized, and the urban spatial information is divided into 3 categories and 14 sub-categories, and the urban spatial information is divided into three categories and 14 sub-categories through multi-scale segmentation. Spectral difference segmentation is used to obtain "image objects" of GF-2 images. According to spectral features, band value features, geometric features, texture features, and context relations, the extraction rules of spatial information are established. Thus, the main urban spatial information is extracted, and the bridge between RS and GIS is constructed, which can be used in urban spatial analysis. The results of this paper show that the overall accuracy of urban spatial information extraction is 83.24%, and the Kappa coefficient is 0.8069. The extraction precision of vegetation and river is higher than 80%. The extraction accuracy of urban roads and buildings is lower than that of other buildings. The overall spatial information extraction results are in line with expectations.
【學(xué)位授予單位】:中國地質(zhì)大學(xué)(北京)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:P237

【參考文獻】

相關(guān)期刊論文 前10條

1 杜國明;劉美;孟凡浩;匡文慧;春香;馮悅;;基于地學(xué)知識的大尺度土地利用/土地覆蓋精細化分類方法研究[J];地球信息科學(xué)學(xué)報;2017年01期

2 孟凡曉;陳圣波;張國亮;;基于全參考“高分二號”衛(wèi)星圖像融合質(zhì)量評價[J];航天返回與遙感;2016年06期

3 李德仁;柳來星;;上下文感知的智慧城市空間信息服務(wù)組合[J];武漢大學(xué)學(xué)報(信息科學(xué)版);2016年07期

4 張馨蓓;;高分二號影像融合方法比較與評價[J];黑龍江科技信息;2016年17期

5 明冬萍;周文;汪閩;;基于譜空間統(tǒng)計特征的高分辨率影像分割尺度估計[J];地球信息科學(xué)學(xué)報;2016年05期

6 王忠武;劉順喜;戴建旺;尤淑撐;孟超;;“高分二號”衛(wèi)星多光譜與全色影像配準(zhǔn)策略[J];航天返回與遙感;2015年04期

7 王露;劉慶元;;高分辨率遙感影像多尺度分割中最優(yōu)尺度選取方法綜述[J];測繪與空間地理信息;2015年03期

8 孫杰;賴祖龍;;利用隨機森林的城區(qū)機載LiDAR數(shù)據(jù)特征選擇與分類[J];武漢大學(xué)學(xué)報(信息科學(xué)版);2014年11期

9 朱俊杰;杜小平;范湘濤;郭華東;;一種改進的多尺度分形網(wǎng)絡(luò)演化分割方法[J];遙感技術(shù)與應(yīng)用;2014年02期

10 胡榮明;黃小兵;黃遠程;;增強形態(tài)學(xué)建筑物指數(shù)應(yīng)用于高分辨率遙感影像中建筑物提取[J];測繪學(xué)報;2014年05期

相關(guān)博士學(xué)位論文 前1條

1 余柏蒗;基于面向?qū)ο罄碚摰某鞘锌臻g信息遙感分析研究[D];華東師范大學(xué);2009年

相關(guān)碩士學(xué)位論文 前1條

1 孫波中;多尺度分割技術(shù)在高分辨率影像信息提取中的應(yīng)用研究[D];西安科技大學(xué);2011年

,

本文編號:2440875

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/2440875.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶10cef***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com