基于立體全景相機(jī)的空間幾何信息提取方法研究
[Abstract]:With the development of GIS, Internet of things and virtual reality, indoor positioning has been the last one meter service, and the expression of indoor environment is the most important. Panoramic image (Panoramic Image) as a new model representation method, with its unique advantages, that is, fast and convenient data acquisition in indoor model representation occupies a place. Panoramic images can also be combined with virtual reality to enable people to roam the world without leaving their homes and provide information of the original scene. Nowadays, most panoramic cameras shoot two-dimensional images. Although two-dimensional images have the visual sense of three-dimensional, they do not have the real measurability, which limits their application scope. Based on the classical photogrammetry theory and computer vision theory, a new stereo panoramic camera equipment is designed in this paper, and the stereo image pairs of objects in 360 擄脳 180 擄scene around the stereo panoramic camera are obtained. Based on the stereo panoramic camera, the roaming of the panoramic image and the extraction of the spatial geometric information from the scene are realized. The specific research methods and work are as follows: 1. A panoramic image data acquisition device based on array camera is designed. Each stereo camera consists of two Gopro motion cameras. Five pairs of stereoscopic cameras in horizontal direction, collecting level 360? Of the A pair of stereoscopic cameras facing the sky collect images of indoor ceilings. The device is fixed by 3D printer, and the 360 擄脳 180 擄image around the camera is acquired. 2. 2. The calibration of the camera is completed. The paper target is calibrated with high precision and the camera calibration method is used to calibrate the camera. The internal azimuth elements and various distortion parameters of each camera are obtained. According to the distortion parameters of each camera, the sequence images are corrected respectively, and the sequence images after eliminating the distortion are obtained. The world coordinates of the image points in the sequence images are obtained, and the accuracy of the points is 鹵2.6 cm. After the equipment is assembled successfully, the relative orientation and absolute orientation of each pair of stereoscopic cameras are carried out from the angle of photogrammetry. The model coordinates are obtained by relative orientation, and the model scale of each pair of stereoscopic cameras is solved by absolute orientation and integrated into the whole system. Take a panoramic view of the scene at a time. Relative orientation and model point coordinate acquisition, multiplied by the scale, get the world coordinates of the object points, of course, scale needs to be periodically checked. 4. The extraction of spatial geometric information from panoramic images is completed. For the information of polygon area, circle area, slope, angle and so on, the three-dimensional coordinate method is used to extract the information, and the least square method is used to solve the strict adjustment. 5. The panoramic roaming of the sequence images collected by the stereo panoramic camera is realized, and the geometric information is extracted from the roaming angle. Based on the Harris feature extraction method, the image features are extracted, and the coordinate transformation between images is realized. The linear fusion and the improved linear fusion are used to deal with the problems of color difference and seam in the overlapped image. Finally, based on OpenGL, the spliced image is projected onto the sphere and the view point is set at the center of the sphere, thus realizing the roaming of the panoramic image.
【學(xué)位授予單位】:北京建筑大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:P235;P209
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 蒙劍;;一種基于全景影像的電子量測(cè)系統(tǒng)[J];電子科學(xué)技術(shù);2017年01期
2 尤磊;唐守正;宋新宇;;基于圓柱面投影的樹(shù)干表面重建算法[J];林業(yè)科學(xué)研究;2016年06期
3 王冬;劉鳳英;陳天恩;張少鵬;;一種相機(jī)標(biāo)定參數(shù)的柱面全景影像拼接方法[J];測(cè)繪科學(xué);2016年07期
4 孫振興;鐘若飛;;一種用于全景影像的測(cè)量方案[J];應(yīng)用科學(xué)學(xué)報(bào);2015年04期
5 張寶龍;李洪蕊;李丹;戴鳳智;;一種針對(duì)車載全景系統(tǒng)的圖像拼接算法的仿真[J];電子與信息學(xué)報(bào);2015年05期
6 孟憲文;;基于高斯混合模型的幾何不變魯棒水印算法[J];中國(guó)人民公安大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年02期
7 姚國(guó)標(biāo);;傾斜影像匹配關(guān)鍵算法及應(yīng)用研究[J];測(cè)繪學(xué)報(bào);2015年03期
8 詹總謙;王鑫;彭敏;;魚(yú)眼鏡頭全景影像可測(cè)量關(guān)鍵算法研究[J];測(cè)繪通報(bào);2015年01期
9 余汪洋;陳祥光;董守龍;吳磊;;基于小波變換的圖像融合算法研究[J];北京理工大學(xué)學(xué)報(bào);2014年12期
10 曾凡洋;鐘若飛;宋楊;任苗;;車載全景影像核線匹配和空間前方交會(huì)[J];遙感學(xué)報(bào);2014年06期
相關(guān)博士學(xué)位論文 前1條
1 宋寶森;全景圖像拼接方法研究與實(shí)現(xiàn)[D];哈爾濱工程大學(xué);2012年
相關(guān)碩士學(xué)位論文 前9條
1 林冠西;基于動(dòng)態(tài)目標(biāo)檢測(cè)的移動(dòng)機(jī)器人路徑規(guī)劃研究[D];武漢科技大學(xué);2014年
2 舒娜;攝像機(jī)標(biāo)定方法的研究[D];南京理工大學(xué);2014年
3 王海鳳;基于特征的圖像配準(zhǔn)與拼接技術(shù)[D];山東師范大學(xué);2012年
4 金元;基于ANFIS的面陣相機(jī)幾何畸變校正方法研究[D];南京理工大學(xué);2012年
5 丁昊;基于線特征的相機(jī)標(biāo)定與定向方法研究[D];山東科技大學(xué);2011年
6 劉學(xué);基于特征的彩色圖像配準(zhǔn)技術(shù)研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2010年
7 湯猛;交通事故現(xiàn)場(chǎng)快速攝影測(cè)量的研究[D];長(zhǎng)安大學(xué);2010年
8 張煒;基于點(diǎn)特征的圖像拼接技術(shù)研究[D];河南科技大學(xué);2010年
9 余粉香;目標(biāo)影像數(shù)據(jù)庫(kù)的設(shè)計(jì)與實(shí)現(xiàn)[D];解放軍信息工程大學(xué);2006年
,本文編號(hào):2425041
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/2425041.html