基于EEMD去噪和果蠅支持向量機(jī)的變形預(yù)測(cè)方法研究
[Abstract]:Deformation monitoring is a technical method for collecting deformation information of deformable bodies. Processing and analysis of deformation information is the ultimate purpose of deformation monitoring. The preprocessing of deformation data can effectively remove the errors in the data, and it is helpful to improve the accuracy of deformation analysis and prediction results in the next step. Because the deformation of deformable body is nonlinear, fuzzy and uncertain, the results of traditional accurate mathematical model for deformation prediction are quite different from the actual situation. Support vector machine (SVM) is a new machine learning method proposed by Vapnik et al in 1990s based on statistical learning theory. It can find the optimal solution of the finite sample data and has stronger theoretical basis and better generalization performance than the neural network learning algorithm based on empirical risk principle. The parameters of support vector machine (SVM) prediction model determine the sample training error and the generalization of prediction samples. However, there is no complete theory and method to solve this problem, which can only be solved by example simulation and algorithm optimization. Drosophila optimization algorithm is based on the characteristics of searching for food, olfactory memory and visual memory under the synergistic action of swarm intelligence. It has a good effect on the optimization of parameters, and can achieve global optimization. In this paper, the high frequency noise signals in the deformation data are separated by the method of integrated empirical mode decomposition. To solve the problem that the high frequency noise also contains useful signals, the threshold quantization is carried out to retain the signals contained in the noise. Finish the preprocessing of deformation data. Then, aiming at the open problem of parameter selection of support vector machine, which is also the key problem in practical application of support vector machine prediction model, we use Drosophila algorithm to optimize selection, and combine with engineering example. It is proved that the optimization algorithm of Drosophila simplifies the parameter selection of support vector machine and avoids the blindness of super-parameter selection in the application of practical engineering support vector machine prediction.
【學(xué)位授予單位】:遼寧工程技術(shù)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:TP18;P22
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 趙國(guó)忱;蘇運(yùn)強(qiáng);范良;;獨(dú)立分量分析在煤倉(cāng)沉降分析中的應(yīng)用[J];測(cè)繪通報(bào);2012年06期
2 范良;趙國(guó)忱;蘇運(yùn)強(qiáng);;果蠅算法優(yōu)化的廣義回歸神經(jīng)網(wǎng)絡(luò)在變形監(jiān)測(cè)預(yù)報(bào)中的應(yīng)用[J];測(cè)繪通報(bào);2013年11期
3 呂建新;吳虎勝;田杰;;EEMD的非平穩(wěn)信號(hào)降噪及其故障診斷應(yīng)用[J];計(jì)算機(jī)工程與應(yīng)用;2011年28期
4 張學(xué)工;關(guān)于統(tǒng)計(jì)學(xué)習(xí)理論與支持向量機(jī)[J];自動(dòng)化學(xué)報(bào);2000年01期
5 肖正安;;基于果蠅優(yōu)化算法的模擬濾波器設(shè)計(jì)[J];湖北第二師范學(xué)院學(xué)報(bào);2012年02期
6 許智慧;王福林;孫丹丹;王吉權(quán);;基于FOA-RBF神經(jīng)網(wǎng)絡(luò)的外貿(mào)出口預(yù)測(cè)[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2012年13期
7 潘文超;;應(yīng)用果蠅優(yōu)化算法優(yōu)化廣義回歸神經(jīng)網(wǎng)絡(luò)進(jìn)行企業(yè)經(jīng)營(yíng)績(jī)效評(píng)估[J];太原理工大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版);2011年04期
8 榮海娜;張葛祥;金煒東;;系統(tǒng)辨識(shí)中支持向量機(jī)核函數(shù)及其參數(shù)的研究[J];系統(tǒng)仿真學(xué)報(bào);2006年11期
本文編號(hào):2416772
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/2416772.html