基于圖模型和流形排序的遙感影像人工地物提取
發(fā)布時間:2019-01-21 15:10
【摘要】:人工地物自動提取是目標(biāo)識別領(lǐng)域的重要研究內(nèi)容。該文將圖模型和流形排序算法相結(jié)合,提出一種基于遙感影像自動提取人工地物的算法。該算法在基于量子遺傳算法的KSW熵分割算法獲得影像人工地物先驗值的基礎(chǔ)上,構(gòu)建以色調(diào)、紋理、方向等多特征為鄰接邊權(quán)重的圖模型,并以超像素作為基本單位在圖模型中進(jìn)行流形排序,最終通過自適應(yīng)閾值的方式獲得人工地物分割結(jié)果。通過利用兩幅不同分辨率遙感影像對該算法進(jìn)行驗證,結(jié)果顯示該算法可以較為完整地提取人工地物,具有較高的正確識別率和較低的漏檢率。
[Abstract]:Automatic extraction of artificial objects is an important research content in the field of target recognition. This paper presents an algorithm for automatic extraction of artificial objects based on remote sensing images by combining graph model with manifold sorting algorithm. Based on the KSW entropy segmentation algorithm based on quantum genetic algorithm (QGA) to obtain the priori values of artificial ground objects, a graph model with color, texture, direction and other features as adjacent edge weights is constructed. The superpixel is taken as the basic unit to sort the manifold in the graph model, and finally the artificial ground object segmentation results are obtained by adaptive threshold method. Two remote sensing images with different resolution are used to verify the algorithm. The results show that the algorithm can extract artificial objects completely and has higher correct recognition rate and lower missed detection rate.
【作者單位】: 武漢大學(xué)遙感信息工程學(xué)院;
【基金】:廣東省省級科技計劃項目(2015A090905002) 廣州市產(chǎn)學(xué)研協(xié)同創(chuàng)新民生科技重大專項項目(201508020054) 國家863計劃項目(2013AA063905)
【分類號】:P237
本文編號:2412768
[Abstract]:Automatic extraction of artificial objects is an important research content in the field of target recognition. This paper presents an algorithm for automatic extraction of artificial objects based on remote sensing images by combining graph model with manifold sorting algorithm. Based on the KSW entropy segmentation algorithm based on quantum genetic algorithm (QGA) to obtain the priori values of artificial ground objects, a graph model with color, texture, direction and other features as adjacent edge weights is constructed. The superpixel is taken as the basic unit to sort the manifold in the graph model, and finally the artificial ground object segmentation results are obtained by adaptive threshold method. Two remote sensing images with different resolution are used to verify the algorithm. The results show that the algorithm can extract artificial objects completely and has higher correct recognition rate and lower missed detection rate.
【作者單位】: 武漢大學(xué)遙感信息工程學(xué)院;
【基金】:廣東省省級科技計劃項目(2015A090905002) 廣州市產(chǎn)學(xué)研協(xié)同創(chuàng)新民生科技重大專項項目(201508020054) 國家863計劃項目(2013AA063905)
【分類號】:P237
【相似文獻(xiàn)】
相關(guān)期刊論文 前4條
1 劉亞文,葉曉新;城區(qū)人工地物變化檢測方法的研究[J];測繪通報;2001年07期
2 劉建貴,張兵,鄭蘭芬,童慶禧;基于光譜特征的城市人工地物分級分類方法研究[J];遙感技術(shù)與應(yīng)用;1999年03期
3 李二森;張保明;郭海濤;何喬;初艷鋒;盧俊;;兩種單張航片確定人工地物比高方法的比較[J];測繪科學(xué);2008年02期
4 ;[J];;年期
相關(guān)碩士學(xué)位論文 前2條
1 李二森;基于遙感影像的人工地物高度信息快速提取技術(shù)研究[D];解放軍信息工程大學(xué);2008年
2 李英芳;QUICKBIRD影像人工地物提取方法研究[D];中南大學(xué);2010年
,本文編號:2412768
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/2412768.html
最近更新
教材專著