眾源GPS軌跡歸并算法研究
[Abstract]:With the rapid development and popularization of mobile Internet and mobile terminals, the reduction of smartphone prices has promoted the popularity of smart phones in most areas and people, and has become an indispensable tool in people's lives. The acquisition of GPS (Global Positioning System, global positioning system (GPS (Global Positioning System,) trajectory data by mobile phone becomes more and more convenient, and the scale is becoming larger and larger, so a large number of mobile object trajectory data appear. These locus data, however, produce a variety of location-based service (Location Based Services,LBS) applications. Therefore, how to automatically extract, construct and update the road network information from massive GPS track data has become a hot topic of current research. The solution of this problem lies in improving the urban traffic environment and vehicle navigation. Scenic area tourism and disaster relief and other aspects play a more and more important role. By using computer software, GIS (Geographic Information System or Geo-Information System, Geographic Information system (GIS) and considering the characteristics of vector data structure and raster data structure in spatial data structure, a multisource GPS locus merging algorithm is proposed in this paper. The algorithm includes four steps: vector data rasterization, raster data binarization, raster data vectorization and locus centerline extraction. Specifically, the track merging algorithm is implemented based on ArcGIS Engine component and C # language, then four groups of experiments are carried out, and four groups of experimental data are visualized and analyzed by Google Earth and ArcGIS Desktop software. Through the above analysis, the paper draws the following conclusions: (1) in the trajectory data preprocessing, Douglas Puck linear simplification (Douglas-Peucker,DP) algorithm is better for the removal of drift points; The noisy density-based clustering (Density-Based Spatial Clustering of Applications with Noise,DBSCAN) algorithm has good effect on noise point removal. (2) an optimized vector data rasterization method is used. Good results can be obtained by converting vector data into raster data. In the process of output merging, Gao Si filter algorithm can get good results by smoothing the trajectory. (3) the multi-source GPS trajectory merging algorithm proposed in this paper can accurately extract the track network and generate the central line.
【學(xué)位授予單位】:成都理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:P228.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊偉;艾廷華;;運(yùn)用約束Delaunay三角網(wǎng)從眾源軌跡線提取道路邊界[J];測(cè)繪學(xué)報(bào);2017年02期
2 于海燕;牛慶麗;;計(jì)算機(jī)技術(shù)在圖像輪廓提取中的有效應(yīng)用[J];現(xiàn)代電子技術(shù);2016年10期
3 殷俊;黃宗維;;基于ArcGIS的道路中心線自動(dòng)提取方法[J];地礦測(cè)繪;2016年01期
4 唐爐亮;劉章;楊雪;闞子涵;李清泉;董坤;;符合認(rèn)知規(guī)律的時(shí)空軌跡融合與路網(wǎng)生成方法[J];測(cè)繪學(xué)報(bào);2015年11期
5 鄭佳榮;王強(qiáng);占文峰;陳曉潔;;我國(guó)地理信息行業(yè)坐標(biāo)系綜述[J];北京工業(yè)職業(yè)技術(shù)學(xué)院學(xué)報(bào);2015年02期
6 趙娜;袁家斌;徐晗;;智能交通系統(tǒng)綜述[J];計(jì)算機(jī)科學(xué);2014年11期
7 魏金標(biāo);陳振杰;周琛;任沂斌;;一種基于邊界搜索的柵格矢量化算法[J];測(cè)繪科學(xué);2015年03期
8 歐陽(yáng)鴻;劉建勛;劉毅志;廖祝華;陳佘喜;;基于步行GPS軌跡的路網(wǎng)提取方法[J];計(jì)算機(jī)與現(xiàn)代化;2014年02期
9 苗則朗;史文中;張華;;一種高分辨率影像道路中心線提取算法[J];中國(guó)礦業(yè)大學(xué)學(xué)報(bào);2013年05期
10 林輝;傅民生;黃望華;;常用大地坐標(biāo)系統(tǒng)及其轉(zhuǎn)換[J];華東森林經(jīng)理;2013年01期
相關(guān)博士學(xué)位論文 前1條
1 張治華;基于GPS軌跡的出行信息提取研究[D];華東師范大學(xué);2010年
相關(guān)碩士學(xué)位論文 前7條
1 徐士昊;基于公交車(chē)GPS軌跡數(shù)據(jù)動(dòng)態(tài)生成矢量路網(wǎng)算法的研究[D];山東財(cái)經(jīng)大學(xué);2016年
2 宋樂(lè)怡;海量出租車(chē)軌跡數(shù)據(jù)分析與位置推薦服務(wù)[D];華東師范大學(xué);2015年
3 歐陽(yáng)鴻;基于步行GPS軌跡的路網(wǎng)提取研究[D];湖南科技大學(xué);2014年
4 楊光;軌跡數(shù)據(jù)的概化方法[D];中國(guó)礦業(yè)大學(xué);2014年
5 趙迪華;車(chē)輛導(dǎo)航系統(tǒng)中的地圖匹配算法研究[D];云南大學(xué);2012年
6 李元元;信號(hào)交叉口公交優(yōu)先控制策略研究[D];長(zhǎng)安大學(xué);2007年
7 李曉菲;數(shù)據(jù)預(yù)處理算法的研究與應(yīng)用[D];西南交通大學(xué);2006年
,本文編號(hào):2406119
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/2406119.html