降低無(wú)人機(jī)影像數(shù)據(jù)冗余度方法的研究
[Abstract]:Unmanned aerial vehicle (UAV) images have a high degree of overlap, too many amplitudes, and it takes a lot of time to concatenate images. Without affecting the quality of data, how to reduce the redundancy of aerial photographs is the main problem in this paper. Based on the land right confirmation project of a county in Gansu province and the measured UAV image as the basic data, this paper analyzes and researches on reducing the overlap degree and data redundancy of UAV image. The specific research contents and results are as follows: 1. Firstly, the image overlap degree of UAV data in the study area is calculated. Combined with the optimal overlap degree and specification requirements of UAV, it is found that there is a lot of redundancy in UAV images. Aiming at the characteristics of high overlap degree of UAV images, thinning methods with different intervals are used to dilute the images. The experimental results show that the larger the thinning interval is, the less time is used for image stitching and the greater the error in plane position is. At intervals of 4 images, the critical value of image overlap degree is reached, and the time of stitching is more than half of that of unextracted images. By constructing a sample database containing 138 aerial remote sensing images and using the method of knowledge base, on the basis of 10 points system, the weighted mean standard deviation (WMSD) is put forward. The average gradient and information entropy are used to evaluate the image quality, and a thinning method based on the comprehensive evaluation value is established. Its image stitching time is nearly half shorter than that of all image stitching, and the "white spot" phenomenon caused by overexposure image is obviously reduced, and the recognition degree of image is improved obviously, and the good control of the error in the plane position of the image is obtained. Image clipping also reduces image overlap and speeds up UAV image matching. At the same time, the edge distortion of UAV image is large, and the edge of the cut image is basically cut off, which can greatly improve the registration accuracy of the image. In view of this feature of image clipping, the combination of image clipping and rarefaction is proposed to further shorten the image stitching time and improve the influence of image edge distortion on image mosaic.
【學(xué)位授予單位】:西安科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:P237
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李二俊;劉萬(wàn)林;余濤;謝東海;蔡慶空;;基于SURF算法的無(wú)人機(jī)航空?qǐng)D像自動(dòng)配準(zhǔn)研究[J];工程勘察;2013年10期
2 闞峻嶺;谷宗運(yùn);殷云霞;杜春敏;;基于ASIFT的醫(yī)學(xué)圖像配準(zhǔn)算法[J];安慶師范學(xué)院學(xué)報(bào)(自然科學(xué)版);2013年01期
3 楊小輝;王敏;;基于ASIFT的無(wú)縫圖像拼接方法[J];計(jì)算機(jī)工程;2013年02期
4 劉慶元;劉有;鄒磊;易柳城;;無(wú)人機(jī)遙感影像拼接方法探討[J];測(cè)繪通報(bào);2012年05期
5 殷瑞靜;陳水利;;基于ASIFT的低空遙感影像拼接技術(shù)[J];集美大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年02期
6 陳碩;吳成東;陳東岳;;基于視覺(jué)顯著性特征的快速場(chǎng)景配準(zhǔn)方法[J];中國(guó)圖象圖形學(xué)報(bào);2011年07期
7 安建妮;劉貴喜;;利用特征點(diǎn)配準(zhǔn)和變換參數(shù)自動(dòng)辨識(shí)的圖像拼接算法[J];紅外與激光工程;2011年03期
8 謝雨來(lái);李醒飛;呂津瑋;高雅彪;;基于SURF算法的水下圖像實(shí)時(shí)配準(zhǔn)方法[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2010年12期
9 蘇俊英;;SIFT特征匹配無(wú)人飛艇多光譜影像拼接[J];應(yīng)用科學(xué)學(xué)報(bào);2010年06期
10 魯恒;李永樹(shù);何敬;陳強(qiáng);任志明;;一種基于特征點(diǎn)的無(wú)人機(jī)影像自動(dòng)拼接方法[J];地理與地理信息科學(xué);2010年05期
相關(guān)碩士學(xué)位論文 前6條
1 陶青松;基于ASIFT特征的圖像匹配技術(shù)研究[D];云南大學(xué);2012年
2 周茜;遙感影像自動(dòng)拼接技術(shù)研究[D];西安電子科技大學(xué);2012年
3 韓文超;基于POS系統(tǒng)的無(wú)人機(jī)遙感圖像拼接技術(shù)研究與實(shí)現(xiàn)[D];南京大學(xué);2011年
4 曹紅杏;基于特征的圖像拼接技術(shù)研究[D];中國(guó)科學(xué)院研究生院(西安光學(xué)精密機(jī)械研究所);2008年
5 張春美;特征點(diǎn)提取及其在圖像匹配中的應(yīng)用研究[D];解放軍信息工程大學(xué);2008年
6 劉冬梅;圖像拼接算法研究[D];西安電子科技大學(xué);2008年
,本文編號(hào):2399049
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/2399049.html