基于視覺感知原理的高分辨率遙感影像分割與人工目標(biāo)提取研究
[Abstract]:With the development of sensor technology, the ground resolution acquired by remote sensing image has been improved in recent years. As a result, more and more ground detail is clearly displayed by the remote sensing image, and the ability of the remote sensing image to describe the details of the ground is increasing. The high-resolution remote sensing image has high spatial resolution and less spectral resolution, leading to the fact that the traditional remote sensing image processing technology can not perform better analysis and processing on the high-resolution remote sensing image, and a new challenge is put forward for the processing technology of the remote sensing image. However, for remote sensing images with high spatial resolution, through the observation of the human eye, it is possible to easily recognize and recognize a wide variety of features and their complex details in the cognitive image. The human visual sense can make all-round observation and cognition of the high-resolution remote sensing image from the aspects of color, texture, and shape. According to this feature, this paper attempts to recognize and recognize the high-resolution remote sensing image by simulating the image processing capability of the human eye. In particular, it mainly includes the following aspects: 1. Based on the visual nerve sense theory, a high-resolution remote sensing image segmentation method for simulating the visual perception is presented. The method comprises the following steps of: starting from a plurality of visual perception characteristics, carrying out detailed analysis on the spectrum, the texture and the detail of the remote sensing image through the non-supervised mathematical and image processing tools, and establishing a remote sensing image segmentation model for simulating the visual perception capability of the human eyes, and obtaining the segmentation result with good regional consistency and strong detail description ability, so as to realize the recognition and analysis of the high-resolution remote sensing image. and according to the actual test, the values of a plurality of parameters in the segmentation model are tested, analyzed and summed to obtain the law of the value of the parameters. based on the shape and structure of the road, the method has the best segmentation ability and the segmentation result is similar to that of the human eye. A method of shape analysis for road extraction based on visual perception is proposed. according to the characteristic of the road on the high-score remote sensing image, the ground target of the suspected road on the image is analyzed from the angle of the shape, the road target with the long-line property and the mesh-like linear structure is found, and the shape separation model is established, so that the non-linear non-road information is separated, and the complete road information is finally obtained. and according to the actual test, the values of different parameters in the road extraction method are tested, analyzed and summed to obtain the law of the value of the parameters. The road extraction experiment is carried out on the high-resolution aerial image of a complex urban area with complex road distribution, and the road information is compared with the reference road information. The method can correctly recognize the road, and proves that the road extraction algorithm proposed by the invention can be fast and reliable in a complex ground environment, The method of building shape based on the visual perception is put forward based on the human eye's basic cognition of the shape. According to the method, the shape of a building is characterized and recognized in a plurality of parameters from a plurality of shape angles in a manner of a plurality of parameters from a plurality of shape angles, and the shape of the building is recognized. Through a series of parameter performance tests, the test, evaluation and analysis of the shape cognition ability of different parameters are carried out, the characteristics and the methods of using the parameters are summarized and summarized, and a scientific and reasonable shape cognition method is developed according to the performance of different parameters. in that invention, a shape-based building extraction experiment is carry out on the high-resolution aerial image of the real urban area, the shape analysis is carried out on the segmentation result of the image, and a building extraction result which is consistent with the visual perception of the human eye can be obtained, It is proved that the building shape cognitive parameters proposed in this paper can be used to describe and cognize the building features in a simple and accurate way.
【學(xué)位授予單位】:武漢大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:P237
【相似文獻】
相關(guān)期刊論文 前10條
1 王愛萍;王樹根;吳會征;;利用分層聚合進行高分辨率遙感影像多尺度分割[J];武漢大學(xué)學(xué)報(信息科學(xué)版);2009年09期
2 王艷梅;王根杰;劉海娟;;高分辨率遙感影像提取道路方法研究進展[J];赤峰學(xué)院學(xué)報(自然科學(xué)版);2013年19期
3 顧鈺培;肖蘭玲;凌婷婷;達利春;;一種基于高分辨率遙感影像的建筑物提取方法[J];測繪與空間地理信息;2014年04期
4 趙書河;;高分辨率遙感數(shù)據(jù)處理方法實驗研究[J];地學(xué)前緣;2006年03期
5 羅軍;潘瑜春;王紀華;陸洲;曹榮龍;閻廣建;;基于高分辨率遙感影像的設(shè)施農(nóng)業(yè)資源信息采集技術(shù)研究[J];地理與地理信息科學(xué);2007年03期
6 邵蕓;郭華東;范湘濤;王爾和;朱博勤;馬建文;張風(fēng)麗;;奧運主場館區(qū)工程環(huán)境高分辨率遙感監(jiān)測與虛擬仿真研究[J];遙感學(xué)報;2008年04期
7 陳世榮;馬海建;范一大;徐豐;連健;;基于高分辨率遙感影像的汶川地震道路損毀評估[J];遙感學(xué)報;2008年06期
8 韓春峰;米曉飛;;基于高分辨率遙感影像的人口信息的提取綜述[J];科技資訊;2010年04期
9 李彩露;吳平;王寧;劉源璋;;高分辨率遙感影像道路提取方法綜述[J];地理空間信息;2011年03期
10 楊先武;韋春桃;李彩露;吳平;;基于形態(tài)重建的高分辨率遙感影像城市道路提取[J];地理科學(xué);2011年08期
相關(guān)會議論文 前10條
1 李艷芳;王生;;高分辨率遙感影像在公安行業(yè)的應(yīng)用分析[A];第十七屆中國遙感大會摘要集[C];2010年
2 趙書河;王培法;肖鵬峰;馮學(xué)智;;高分辨率遙感應(yīng)用研究[A];中國地理學(xué)會2006年學(xué)術(shù)年會論文摘要集[C];2006年
3 朱曉鈴;鄔群勇;;基于高分辨率遙感影像的城市道路提取方法研究[A];《測繪通報》測繪科學(xué)前沿技術(shù)論壇摘要集[C];2008年
4 張劍清;鄭順義;張勇;張宏偉;李治江;;高分辨率遙感影像的精糾正[A];第十四屆全國遙感技術(shù)學(xué)術(shù)交流會論文摘要集[C];2003年
5 馬力;;基于高分辨率遙感影像的導(dǎo)航數(shù)據(jù)更新研究[A];中國地理信息系統(tǒng)協(xié)會第四次會員代表大會暨第十一屆年會論文集[C];2007年
6 陳君穎;田慶久;;高分辨率遙感植被分類模式研究[A];第十五屆全國遙感技術(shù)學(xué)術(shù)交流會論文摘要集[C];2005年
7 燕琴;張繼賢;劉玉紅;錢廣軍;;以影像序列糾正高分辨率遙感影像的應(yīng)用研究[A];全面建設(shè)小康社會:中國科技工作者的歷史責(zé)任——中國科協(xié)2003年學(xué)術(shù)年會論文集(上)[C];2003年
8 溫小歡;林廣發(fā);陳明華;陳友飛;;基于高分辨率遙感影像獨立樹冠提取方法之比較[A];中國地理學(xué)會百年慶典學(xué)術(shù)論文摘要集[C];2009年
9 羅震;楊存建;李小文;;基于高分辨率遙感影像的農(nóng)村聚落信息的提取[A];《測繪通報》測繪科學(xué)前沿技術(shù)論壇摘要集[C];2008年
10 董明;;基于高分辨率遙感影像的道路半自動提取方法研究[A];數(shù)字測繪與GIS技術(shù)應(yīng)用研討交流會論文集[C];2008年
相關(guān)重要報紙文章 前1條
1 本報記者 崔恩慧;如何“玩轉(zhuǎn)”高分辨率遙感技術(shù)?[N];中國航天報;2014年
相關(guān)博士學(xué)位論文 前10條
1 霍宏;生物視覺啟發(fā)的高分辨率遙感影像特征提取與目標(biāo)檢測研究[D];上海交通大學(xué);2014年
2 沈小樂;視覺注意機制下面向?qū)ο蟾叻直媛蔬b感影像建筑物提取[D];武漢大學(xué);2014年
3 叢銘;基于視覺感知原理的高分辨率遙感影像分割與人工目標(biāo)提取研究[D];武漢大學(xué);2015年
4 李榮亞;雙態(tài)云支持下高分辨率遙感存儲與計算一體化研究[D];浙江大學(xué);2014年
5 陶超;高分辨率遙感影像中的城區(qū)與建筑物檢測方法研究[D];華中科技大學(xué);2011年
6 陶超;高分辨率遙感影像中的城區(qū)與建筑物檢測方法研究[D];華中科技大學(xué);2012年
7 洪亮;基于對象馬爾可夫模型的高分辨率遙感影像分割方法研究[D];武漢大學(xué);2010年
8 陳杰;高分辨率遙感影像面向?qū)ο蠓诸惙椒ㄑ芯縖D];中南大學(xué);2010年
9 Rami Badawi(巴達衛(wèi));基于高分辨率遙感影像的南京典型城區(qū)綠地信息提取[D];南京大學(xué);2012年
10 張道兵;高分辨率遙感影像中交互式道路提取算法研究[D];中國科學(xué)院研究生院(西安光學(xué)精密機械研究所);2007年
相關(guān)碩士學(xué)位論文 前10條
1 許潛金;基于高分辨率遙感影像與LiDAR點云的損毀建筑物提取方法研究[D];西南交通大學(xué);2015年
2 李建飛;高分辨率遙感影像中的道路信息提取與表達方法研究[D];湖南工業(yè)大學(xué);2015年
3 孫雯;微小衛(wèi)星低成本高分辨率遙感相機的設(shè)計和研制[D];蘇州大學(xué);2015年
4 程臻;面向?qū)ο蟮母叻直媛蔬b感影像全要素分類研究[D];哈爾濱工業(yè)大學(xué);2015年
5 安麗;基于Hough變換的高分辨率遙感影像道路提取[D];東華理工大學(xué);2015年
6 陳璐璐;土地利用動態(tài)監(jiān)測在土地執(zhí)法中的應(yīng)用[D];南京農(nóng)業(yè)大學(xué);2014年
7 白金婷;結(jié)合高分辨率遙感影像多維特征的森林分類[D];北京林業(yè)大學(xué);2016年
8 張曦;基于時頻特征和支持向量機的高分辨率遙感影像道路提取[D];安徽大學(xué);2016年
9 劉一哲;多尺度分割技術(shù)在高分辨率遙感影像地物提取方法的研究[D];昆明理工大學(xué);2016年
10 宋納;高分辨率遙感影像道路提取方法研究[D];昆明理工大學(xué);2016年
,本文編號:2383730
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/2383730.html