衛(wèi)星定位系統(tǒng)馴服的高精度頻率源
[Abstract]:GPS (Global Positioning System) (Global Positioning system) is a global positioning system developed by the United States Department of Defense on the basis of Meridian instrument system (GPS system predecessor). By 1994, 24 GPS satellites with global coverage of up to 98% had been completed. It can provide real-time positioning and navigation for users around the world, and it can also provide precise timing functions using high stability space-borne atomic clocks. At present, the technology of synchronizing local clock with GPS satellite clock source has become one of the main methods to produce high precision and high stability clock at home and abroad. The core idea of this technology is: when the satellite transmission is normal, the satellite clock tame the local clock by receiving the satellite signal through the handheld terminal; When the satellite signal is unstable, the local clock (constant temperature crystal oscillator) is used instead of the satellite clock to output the pulse signal. This paper first introduces and compares the four major global positioning systems: the GPS Global Positioning system of the United States, the Russian GLONASS system, the European Union Galileo system and the rising star China Beidou Satellite Navigation system. The advantages and disadvantages of each system are analyzed briefly. The GPS system in the United States is the earliest and most widely used in the world. Its technology is relatively mature, and the cost of the ground receiving module is also relatively low. Therefore, the GPS module of the United States is used as the receiving end of the satellite signal to generate the pulse signal. In this paper, a frequency source system based on GPS module is designed. It can tame the local crystal oscillator by 10kHz signal and lpps signal output by GPS receiver module, which can output high precision frequency source signal. The taming effect of the two methods is analyzed and compared. The part of 10kHz acclimation is realized by phase-locked loop. After the GPS module locks the satellite, a high-precision 10kHz signal will be output, and the system will use this 10kHz signal to tame the local constant temperature crystal oscillator. It is mainly composed of two parts: (1) GPS module: by receiving the signal transmitted by the satellite, it processes the high-precision pulse signal as the time reference of the signal source; (2) Semi-digital phase-locked loop: the GPS signal tame the local crystal oscillator, mainly composed of phase detector, passive loop filter, CPLD frequency division and high-precision thermostatic crystal oscillator. The lpps part is mainly composed of phase time difference measurement module. Data processing and voltage feedback, phase time difference measurement module will measure the phase difference between the lpps signal and the crystal oscillator output signal after frequency division. Then the phase difference will be sent to the single chip processor to output a feedback signal to the control end of the constant temperature crystal oscillator to control the variation of the output frequency of the crystal oscillator and to correct the output signal of the high performance frequency source of the local crystal oscillator. The whole system circuit is analyzed, designed, installed and debugged by software and hardware design. The system output data are better than before taming. The system has the advantages of low cost, low power consumption, stable operation, high frequency accuracy and high stability.
【學(xué)位授予單位】:武漢理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:P228.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊東;李冬梅;;帶寬穩(wěn)定的低壓鎖相環(huán)[J];半導(dǎo)體技術(shù);2010年12期
2 向永波;閻躍鵬;高海飛;;低相位噪聲VCO的設(shè)計[J];半導(dǎo)體技術(shù);2012年07期
3 呂蔭學(xué);劉夢新;羅家俊;葉甜春;;一種高性能鑒頻鑒相器的設(shè)計[J];半導(dǎo)體技術(shù);2012年07期
4 謝彥民;馬煦;孔維;孫海燕;;基于雙混頻時差法實現(xiàn)時域頻率穩(wěn)定度測量[J];電訊技術(shù);2011年08期
5 馬煦;孔維;孫海燕;;基于GPS馴服銣鐘的頻率校準(zhǔn)系統(tǒng)設(shè)計[J];電訊技術(shù);2011年10期
6 熊學(xué)海;付志紅;李勝芳;林偉;;基于CPLD的高精度全數(shù)字鎖相環(huán)[J];電子技術(shù)應(yīng)用;2010年12期
7 馬辰光;馮軍;;鎖相環(huán)中電荷泵的分析與設(shè)計[J];固體電子學(xué)研究與進(jìn)展;2010年01期
8 尹海豐;毛志剛;;低抖動時鐘鎖相環(huán)的一種優(yōu)化設(shè)計方法[J];固體電子學(xué)研究與進(jìn)展;2010年03期
9 趙益波;馮久超;;高階電荷泵鎖相環(huán)環(huán)路濾波器的設(shè)計[J];控制理論與應(yīng)用;2011年03期
10 陳勇;周玉梅;;1.6 GHz電荷泵鎖相環(huán)的設(shè)計[J];微電子學(xué);2010年04期
相關(guān)碩士學(xué)位論文 前5條
1 鄧正森;基于鎖相環(huán)技術(shù)頻率合成研究與設(shè)計[D];電子科技大學(xué);2011年
2 田鳴;GPS校準(zhǔn)的數(shù)字式守時鐘研究[D];華中科技大學(xué);2011年
3 巫磊;低噪聲電荷泵鎖相環(huán)分析與設(shè)計[D];華中科技大學(xué);2011年
4 沈曉唯;鎖相環(huán)環(huán)路濾波器對輸出信號相位噪聲的影響[D];上海交通大學(xué);2009年
5 張露;基于GPS的高穩(wěn)頻率源設(shè)計與實現(xiàn)[D];電子科技大學(xué);2010年
,本文編號:2342927
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/2342927.html