車(chē)載激光點(diǎn)云中桿狀目標(biāo)自動(dòng)提取
發(fā)布時(shí)間:2018-11-19 07:25
【摘要】:針對(duì)車(chē)載激光掃描數(shù)據(jù)中桿狀目標(biāo)點(diǎn)云自動(dòng)提取易受臨近地物干擾的問(wèn)題,提出了一種基于掃描線(xiàn)聚類(lèi)判別的桿狀目標(biāo)自動(dòng)提取方法。該方法根據(jù)不同地物在掃描線(xiàn)數(shù)據(jù)中的形態(tài),設(shè)計(jì)了從單條掃描線(xiàn)到多條掃描線(xiàn)的數(shù)據(jù)處理流程。首先對(duì)單條掃描線(xiàn)上的點(diǎn)進(jìn)行距離聚類(lèi),得到不同的地物橫剖面點(diǎn)集;然后根據(jù)點(diǎn)集內(nèi)點(diǎn)的數(shù)量和桿狀目標(biāo)在掃描線(xiàn)上的分布形態(tài),對(duì)聚類(lèi)點(diǎn)集進(jìn)行桿狀目標(biāo)種子點(diǎn)集判別;最后在疑似桿狀目標(biāo)種子點(diǎn)集的平面投影位置處,對(duì)多條掃描線(xiàn)進(jìn)行點(diǎn)集聚類(lèi)和去噪處理得到桿狀目標(biāo)點(diǎn)云。實(shí)驗(yàn)分析表明,針對(duì)不同的激光掃描數(shù)據(jù),該方法能有效降低臨近地物干擾,提取出道路兩側(cè)的桿狀目標(biāo)。
[Abstract]:In order to solve the problem that point cloud extraction from vehicle laser scanning data is easy to be interfered with by adjacent objects, a method of automatic extraction of rod objects based on scanning line clustering discrimination is proposed. According to the shape of different ground objects in scanning line data, the data processing flow from single scan line to multiple scanning line is designed. Firstly, distance clustering of points on a single scan line is carried out to obtain different points set of cross-section of ground objects, and then, according to the number of points in the point set and the distribution form of the rod object on the scanning line, the cluster point set is distinguished from the seed point set of the rod object. Finally, at the plane projection position of the seed point set of the suspected rod target, the point cloud of the rod target is obtained by the point clustering and de-noising processing of several scanning lines. The experimental results show that the proposed method can effectively reduce the interference of adjacent objects and extract the rod-shaped targets on both sides of the road according to the different laser scanning data.
【作者單位】: 山東科技大學(xué)測(cè)繪科學(xué)與工程學(xué)院;
【基金】:海洋公益性行業(yè)科研專(zhuān)項(xiàng)(201305034-1) 國(guó)家重大儀器設(shè)備開(kāi)發(fā)專(zhuān)項(xiàng)(2013YQ120343) 測(cè)繪公益性行業(yè)科研專(zhuān)項(xiàng)(201512034) 山東科技大學(xué)人才引進(jìn)科研啟動(dòng)基金(2016RCJJ004)
【分類(lèi)號(hào)】:P235
本文編號(hào):2341543
[Abstract]:In order to solve the problem that point cloud extraction from vehicle laser scanning data is easy to be interfered with by adjacent objects, a method of automatic extraction of rod objects based on scanning line clustering discrimination is proposed. According to the shape of different ground objects in scanning line data, the data processing flow from single scan line to multiple scanning line is designed. Firstly, distance clustering of points on a single scan line is carried out to obtain different points set of cross-section of ground objects, and then, according to the number of points in the point set and the distribution form of the rod object on the scanning line, the cluster point set is distinguished from the seed point set of the rod object. Finally, at the plane projection position of the seed point set of the suspected rod target, the point cloud of the rod target is obtained by the point clustering and de-noising processing of several scanning lines. The experimental results show that the proposed method can effectively reduce the interference of adjacent objects and extract the rod-shaped targets on both sides of the road according to the different laser scanning data.
【作者單位】: 山東科技大學(xué)測(cè)繪科學(xué)與工程學(xué)院;
【基金】:海洋公益性行業(yè)科研專(zhuān)項(xiàng)(201305034-1) 國(guó)家重大儀器設(shè)備開(kāi)發(fā)專(zhuān)項(xiàng)(2013YQ120343) 測(cè)繪公益性行業(yè)科研專(zhuān)項(xiàng)(201512034) 山東科技大學(xué)人才引進(jìn)科研啟動(dòng)基金(2016RCJJ004)
【分類(lèi)號(hào)】:P235
【相似文獻(xiàn)】
相關(guān)期刊論文 前4條
1 楊崇俊;任應(yīng)超;李津平;;基于單調(diào)鏈的Red/Blue掃描線(xiàn)求交算法[J];武漢大學(xué)學(xué)報(bào)(信息科學(xué)版);2006年09期
2 潘俊;王密;李琪;;基于掃描線(xiàn)填充的快速鑲嵌算法[J];測(cè)繪信息與工程;2006年05期
3 汪志章;;SPOT系統(tǒng)及制圖應(yīng)用(三)[J];鐵路航測(cè);1982年03期
4 管海燕;張劍清;鄧非;鐘良;;基于掃描線(xiàn)的城區(qū)機(jī)載激光掃描數(shù)據(jù)濾波算法研究[J];測(cè)繪通報(bào);2007年12期
相關(guān)會(huì)議論文 前1條
1 任應(yīng)超;李建平;;基于單調(diào)鏈的Red/Blue掃描線(xiàn)求交算法[A];中國(guó)地理信息系統(tǒng)協(xié)會(huì)第八屆年會(huì)論文集[C];2004年
,本文編號(hào):2341543
本文鏈接:http://sikaile.net/kejilunwen/dizhicehuilunwen/2341543.html
最近更新
教材專(zhuān)著